题目内容
已知,tan(
+α)=3,计算:
(1)tanα
(2)
(3)sinα•cosα
| π |
| 4 |
(1)tanα
(2)
| 2sinαcosα+3cos2α |
| 5cos2α-3sin2α |
(3)sinα•cosα
(1)∵已知tan(
+α)=3=
,∴tanα=
.
(2)由(1)可得tan2α=
=
=
.
=
=
=
=
.
(3)sinα•cosα=
=
=
=
.
| π |
| 4 |
| 1+tanα |
| 1-tanα |
| 1 |
| 2 |
(2)由(1)可得tan2α=
| 2tanα |
| 1-tan2α |
| 1 | ||
1-
|
| 4 |
| 3 |
| 2sinαcosα+3cos2α |
| 5cos2α-3sin2α |
| sin2α+3cos2α |
| 5cos2α-3sin2α |
| tan2α+3 |
| 5-3tan2α |
| ||
5-3×
|
| 13 |
| 3 |
(3)sinα•cosα=
| sinαcosα |
| cos2α+sin2α |
| tanα |
| 1+tan2α |
| ||
1+
|
| 2 |
| 5 |
练习册系列答案
相关题目