题目内容
5.已知集合$A=\{x|y=\sqrt{{{log}_2}x}\},B=\{y|y=\frac{1}{2^x},x>0\}$,则A∩CRB=( )| A. | (0,1) | B. | (-∞,1] | C. | [1,+∞) | D. | φ |
分析 通过对数函数的单调性求出集合A,指数函数的单调性求出集合B,然后求解B的补集,即可求解A∩CRB.
解答 解:因为集合A={x|y=$\sqrt{lo{g}_{2}x}$}={x|x≥1}=[1,+∞),
B={y|y=($\frac{1}{2}$)x,x>0}={y|0<y<1}=(0,1),
∴CRB=(-∞,0]∪[1,+∞),
∴A∩CRB=[1,+∞),
故选:C.
点评 本题考查集合的交、并、补的基本运算,指数函数与对数函数的单调性的应用,考查计算能力.
练习册系列答案
相关题目
15.
某健康协会从某地区睡前看手机的居民中随机选取了n人进行调查,得到如图所示的频率分布直方图.已知睡前看手机时间不低于20分钟的有243人,则n的值为( )
| A. | 180 | B. | 450 | C. | 360 | D. | 270 |
13.数列{an}中,满足an+2=2an+1-an,且a1,a4031是函数f(x)=$\frac{1}{3}{x^3}-4{x^2}+6x-1$的极值点,则log2a2016的值是( )
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
10.
空气污染,又称为大气污染,是指由于人类活动或自然过程引起某些物质进入大气中,呈现出足够的浓度,达到足够的时间,并因此危害了人体的舒适、健康和福利或环境的现象.全世界也越来越关注环境保护问题.当空气污染指数(单位:μg/m3)为0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为100~150时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;当空气污染指数为200~300时,空气质量级别为五级,空气质量状况属于重度污染;当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.2015年8月某日某省x个监测点数据统计如下:
(Ⅰ)根据所给统计表和频率分布直方图中的信息求出x,y的值,并完成频率分布直方图;
(Ⅱ)在空气污染指数分别为50~100和150~200的监测点中,用分层抽样的方法抽取5个监测点,从中任意选取2个监测点,事件A“两个都为良”发生的概率是多少?
| 空气污染指数 (单位:μg/m3) | [0,50] | (50,100] | (100,150][ | (150,200] |
| 监测点个数 | 15 | 40 | y | 10 |
(Ⅱ)在空气污染指数分别为50~100和150~200的监测点中,用分层抽样的方法抽取5个监测点,从中任意选取2个监测点,事件A“两个都为良”发生的概率是多少?
17.在区间[-2,1]任取两个实数x,y,则x+y>0概率为( )
| A. | $\frac{2}{9}$ | B. | $\frac{4}{9}$ | C. | $\frac{1}{2}$ | D. | $\frac{7}{9}$ |