题目内容
6.关于x的方程( k-2 )x2-( 3k+6 )x+6k=0有两个负根,则k的取值范围是$[{-\frac{2}{5},0})$.分析 利用方程的根与系数之间的关系进行转化列出关于k的不等式,通过求解不等式确定出k的取值范围,注意进行等价转化.
解答 解:方程( k-2 )x2-( 3k+6 )x+6k=0有两个负根?$\left\{\begin{array}{l}{\frac{3k+6}{k-2}<0}\\{\frac{6k}{k-2}>0}\\{(3k+6)^{2}-24k(k-2)≥0}\end{array}\right.$,
因此得出k的取值范围是$[{-\frac{2}{5},0})$.
故答案为$[{-\frac{2}{5},0})$.
点评 本题考查一元二次方程方程根与系数的关系,考查韦达定理的应用,关键要列出关于字母k的取值范围,通过求解不等式组确定出所求的取值范围.
练习册系列答案
相关题目
18.已知集合A={y|y=log2x,x>2},$B=\{x|y=\sqrt{x-1}\}$,则( )
| A. | A⊆B | B. | A∪B=A | C. | A∩B=∅ | D. | A∩∁RB≠∅ |
16.随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如表.
(1)若以“年龄45岁为分界点”,由以上统计数据完成下面2×2列联表,并判断有多大的把握认为“使用微信交流”的态度与人的年龄有关?
(2)若从年龄在[55,65)的被调查人中随机选取2人进行追踪调查,求2人中至少有1人赞成“使用微信交流”的概率.
下面临界值表供参考:
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)
| 年龄(单位:岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
| 频数 | 5 | 10 | 15 | 10 | 5 | 5 |
| 赞成人数 | 5 | 10 | 12 | 7 | 2 | 1 |
| 年龄低于45岁的人数 | 年龄不低于45岁的人数 | 合计 | |
| 不赞成 | 3 | 10 | 13 |
| 赞成 | 27 | 10 | 37 |
| 合计 | 30 | 20 | 50 |
下面临界值表供参考:
| P(X2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |