题目内容
【题目】设函数
,
,若
,使得直线
的斜率为0,则
的最小值为( )
A.
B.
C.
D. 2
【答案】C
【解析】函数f(x)=﹣x2﹣6x+m,
对称轴x=﹣3,开口向下,
当x∈[﹣5,﹣2]的值域M:f(﹣5)≤M≤f(﹣3),即m+5≤M≤9+m.
函数g(x)=2x3+3x2﹣12x﹣m,
则g′(x)=6x2+6x﹣12.
令g′(x)=0,
可得:x=﹣2或1.
当x∈(﹣∞,﹣2)和(1,+∞)时,g′(x)>0,则g(x)是递增函数.
当x∈(﹣2,1)时,g′(x)<0,则g(x)是递减函数.
∵x∈[﹣1,2]
∴g(1)min=﹣7﹣m
g(﹣1)=13﹣m,g(2)=4﹣m.
∴g(x)值域N:﹣7﹣m≤N≤13﹣m.
由题意,MN
则
,
解得:2≥m≥﹣6.
∴m的最小值为﹣6.
故选:C.
练习册系列答案
相关题目
【题目】某企业为了对新研发的一批产品进行合理定价,将产品按事先拟定的价格进行试销,得到一组销售数据
2,
,如表所示:
试销单价 | 4 | 5 | 6 | 7 | 8 | 9 |
产品销量 | 90 | 84 | 83 | 80 | q | 68 |
已知
.
求表格中q的值;
已知变量x,y具有线性相关性,试利用最小二乘法原理,求产品销量y关于试销单价x的线性回归方程
参考数据
;
用
中的回归方程得到的与
对应的产品销量的估计值记为
2,
,
当
时,则称
为一个“理想数据”
试确定销售单价分别为4,5,6时有哪些是“理想数据”.