题目内容
【题目】正方体
的棱长为2,
分别为
的中点,则( )
![]()
A.直线
与直线
垂直B.直线
与平面
平行
C.平面
截正方体所得的截面面积为
D.点
与点
到平面
的距离相等
【答案】BC
【解析】
A.利用线面垂直的定义进行分析;
B.作出辅助线利用面面平行判断;
C.作出截面然后根据线段长度计算出截面的面积;
D.通过等体积法进行判断.
A.若
,又因为
且
,所以
平面
,
所以
,所以
,显然不成立,故结论错误;
B.如图所示,取
的中点
,连接
,
![]()
由条件可知:
,
,且
,所以平面
平面
,
又因为
平面
,所以
平面
,故结论正确;
C.如图所示,连接
,延长
交于点
,
![]()
因为
为
的中点,所以
,所以
四点共面,
所以截面即为梯形
,又因为
,
,
所以
,所以
,故结论正确;
D.记点
与点
到平面
的距离分别为
,
因为
,
又因为
,
所以
,故结论错误.
故选:BC.
【题目】某大型商场的空调在1月到5月的销售量与月份相关,得到的统计数据如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
销量 | 0.6 | 0.8 | 1.2 | 1.6 | 1.8 |
(1)经分析发现1月到5月的销售量可用线性回归模型拟合该商场空调的月销量
(百件)与月份
之间的相关关系.请用最小二乘法求
关于
的线性回归方程
,并预测6月份该商场空调的销售量;
(2)若该商场的营销部对空调进行新一轮促销,对7月到12月有购买空调意愿的顾客进行问卷调查.假设该地拟购买空调的消费群体十分庞大,经过营销部调研机构对其中的500名顾客进行了一个抽样调查,得到如下一份频数表:
有购买意愿对应的月份 | 7 | 8 | 9 | 10 | 11 | 12 |
频数 | 60 | 80 | 120 | 130 | 80 | 30 |
现采用分层抽样的方法从购买意愿的月份在7月与12月的这90名顾客中随机抽取6名,再从这6人中随机抽取3人进行跟踪调查,求抽出的3人中恰好有2人是购买意愿的月份是12月的概率.
参考公式与数据:线性回归方程
,其中
,
.
【题目】2017年5月27日当今世界围棋排名第一的柯洁在与
的人机大战中中盘弃子认输,至此柯洁与
的三场比赛全部结束,柯洁三战全负,这次人机大战再次引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查,根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.
![]()
(1)请根据已知条件完成下面
列联表,并据此资料你是否有95%的把握认为“围棋迷”与性别有关?
非围棋迷 | 围棋迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
(2)为了进一步了解“围棋迷”的围棋水平,从“围棋迷”中按性别分层抽样抽取5名学生组队参加校际交流赛,首轮该校需派两名学生出赛,若从5名学生中随机抽取2人出赛,求2人恰好一男一女的概率.