题目内容
13.已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=alnx-ax+1,当x∈(-2,0)时,函数f(x)的最小值为1,则a=2.分析 由奇函数f(x)的图象关于原点对称,由题意可得当x∈(0,2)时,f(x)的最大值为-1,求得当x∈(0,2)时,f(x)的导数和单调区间,确定a>0,f(1)为最大值-1,解方程可得a的值.
解答 解:y=f(x)是奇函数,可得f(x)的图象关于原点对称,
由当x∈(-2,0)时,函数f(x)的最小值为1,
可得当x∈(0,2)时,f(x)的最大值为-1.
由f(x)=alnx-ax+1的导数为f′(x)=$\frac{a}{x}$-a=$\frac{a(1-x)}{x}$,
由函数在( 0,2)上取得最大值,可得a>0,f(x)在(1,2)递减,在(0,1)递增.
最大值为f(1)=1-a=-1,
解得a=2,
故答案为:2.
点评 本题考查函数的奇偶性的定义和图象、性质,考查导数的运用:求单调区间和最值,考查运算能力,属于中档题.
练习册系列答案
相关题目
4.已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,学校决定利用随机数表法从中抽取100人进行成绩抽样调查,先将800人按001,002,…,800进行编号.
(1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;(下面摘取了第7行到第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100人的数学与地理的水平测试成绩如下表:
成绩分为优秀、良好、及格三个等级;横向、纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的人数共有20+18+4=42.
①若在该样本中,数学成绩优秀率是30%,求a,b的值;
②在地理成绩及格的学生中,已知a≥11,b≥7,求数学成绩优秀人数比及格人数少的概率.
(1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;(下面摘取了第7行到第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100人的数学与地理的水平测试成绩如下表:
| 人数 | 数学 | |||
| 优秀 | 良好 | 及格 | ||
| 地理 | 优秀 | 7 | 20 | 5 |
| 良好 | 9 | 18 | 6 | |
| 及格 | a | 4 | b | |
①若在该样本中,数学成绩优秀率是30%,求a,b的值;
②在地理成绩及格的学生中,已知a≥11,b≥7,求数学成绩优秀人数比及格人数少的概率.
1.在平行四边形ABCD中,AB=4,AD=3,若$\overrightarrow{CE}$=$\frac{1}{3}$$\overrightarrow{CB}$$+\frac{1}{4}$$\overrightarrow{CD}$,则$\overrightarrow{AE}$=( )
| A. | $\frac{3}{4}$$\overrightarrow{AB}$$+\frac{2}{3}$$\overrightarrow{AD}$ | B. | $\frac{2}{3}$$\overrightarrow{AB}$$+\frac{1}{2}$$\overrightarrow{AD}$ | C. | $\frac{4}{5}$$\overrightarrow{AB}$$+\frac{3}{4}$$\overrightarrow{AD}$ | D. | $\frac{5}{4}$$\overrightarrow{AB}$$+\frac{4}{3}$$\overrightarrow{AD}$ |
8.已知直线l:$\sqrt{3}$x-y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线,两条垂线分别与y轴交于C,D两点,则|CD|=( )
| A. | 2 | B. | 2$\sqrt{3}$ | C. | 4 | D. | 4$\sqrt{3}$ |