题目内容
。
2;
已知二次函数,的导函数的图象如图所示:
(1)求实数的值;
(2)令,若在区间上恰有一零点,求实数的取值范围。
命题:关于的不等式对于一切恒成立,
命题:,若为真,为假,求实数的取值范围.
已知椭圆的离心率为,椭圆上的点到右焦点F的最近距离为2,若椭圆C与x轴交于A、B两点,M是椭圆C上异于A、B的任意一点,直线MA交直线于G点,直线MB交直线于H点。
(1)求椭圆C的方程;
(2)试探求以GH为直径的圆是否恒经过x轴上的定点?若经过,求出定点的坐标;若不经过,请说明理由。
已知,,。
(1)求在点处的切线与直线及曲线所围成的封闭图形的面积;
(2)是否存在实数,使的极大值为3?若存在,求出的值,若不存在,
请说明理由.
一个正方体的顶点都在球面上,它的棱长为,则球的表面积是
A. B. C. D.
已知集合A=,B=,则( )。
A. B. C. D.
若分别为的边上是中线,,则=( )。
A. B. C. D.
若,,则下列不等式成立的是
A. B. C. D.