题目内容
首项a1=
的数列{an}满足:3nan+1-anan+1=2n2+2n(n∈N*)
(1)求a2,a3的值,并求数列{
}的通项公式;
(2)设数列{an}的前n项和为Sn,证明:Sn≥
+
.
| 2 |
| 3 |
(1)求a2,a3的值,并求数列{
| an-2n |
| an-n |
(2)设数列{an}的前n项和为Sn,证明:Sn≥
| n2 |
| 2 |
| n |
| 6 |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知条件利用递推思维能求出a2=
,a3=
.由已知条件an+1-2(n+1)=
-2(n+1)=
,①,an+1-(n+1)=
-(n+1)=
,②,
,得:
=
,由此能求出
=2n+1.
(2)由(1)得an-2n=2n+1•(an-n),故an=
=n-
≥n-
,由此能证明Sn≥
+
.
| 12 |
| 7 |
| 14 |
| 5 |
| 2n2+2n |
| 3n-an |
| 2(n+1)(an-2n) |
| 3n-an |
| 2n2+2n |
| 3n-an |
| (n+1)(an-n) |
| 3n-an |
| ① |
| ② |
| an+1-2(n+1) |
| an+1-(n+1) |
| 2(an-2n) |
| an-n |
| an-2n |
| an-n |
(2)由(1)得an-2n=2n+1•(an-n),故an=
| n•2n+1-2n |
| 2n+1-1 |
| n |
| 2n+1-1 |
| 1 |
| 3 |
| n2 |
| 2 |
| n |
| 6 |
解答:
(1)解:∵首项a1=
的数列{an}满足:3nan+1-anan+1=2n2+2n(n∈N*),
∴3a2-
a2=4,解得a2=
,
6a3-
a3=12,解得a3=
.
∴an+1=
,
∴an+1-2(n+1)=
-2(n+1)
=
=
,①
an+1-(n+1)=
-(n+1)
=
=
,②
,得:
=
,
又a1=
,∴
=4,
∴{
}是首项为4,公比为2的等比数列,
∴
=4•2n-1=2n+1.
(2)证明:∵
=4•2n-1=2n+1,
∴an-2n=2n+1•(an-n),
∴(2n+1-1)an=n•2n+1-2n,
∴an=
=n-
≥n-
,
∴Sn≥(1+2+3+…+n)-
=
-
=
+
.
| 2 |
| 3 |
∴3a2-
| 2 |
| 3 |
| 12 |
| 7 |
6a3-
| 12 |
| 7 |
| 14 |
| 5 |
∴an+1=
| 2n2+2n |
| 3n-an |
∴an+1-2(n+1)=
| 2n2+2n |
| 3n-an |
=
| -4n2-4n+2(n+1)an |
| 3n-an |
=
| 2(n+1)(an-2n) |
| 3n-an |
an+1-(n+1)=
| 2n2+2n |
| 3n-an |
=
| -n2-n+(n+1)an |
| 3n-an |
=
| (n+1)(an-n) |
| 3n-an |
| ① |
| ② |
| an+1-2(n+1) |
| an+1-(n+1) |
| 2(an-2n) |
| an-n |
又a1=
| 2 |
| 3 |
| a1-2 |
| a1-1 |
∴{
| an-2n |
| an-n |
∴
| an-2n |
| an-n |
(2)证明:∵
| an-2n |
| an-n |
∴an-2n=2n+1•(an-n),
∴(2n+1-1)an=n•2n+1-2n,
∴an=
| n•2n+1-2n |
| 2n+1-1 |
| n |
| 2n+1-1 |
| 1 |
| 3 |
∴Sn≥(1+2+3+…+n)-
| n |
| 3 |
=
| n(n+1) |
| 2 |
| n |
| 3 |
=
| n2 |
| 2 |
| n |
| 6 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意构造法的合理运用.
练习册系列答案
相关题目