题目内容

首项a1=
2
3
的数列{an}满足:3nan+1-anan+1=2n2+2n(n∈N*
(1)求a2,a3的值,并求数列{
an-2n
an-n
}的通项公式;
(2)设数列{an}的前n项和为Sn,证明:Sn
n2
2
+
n
6
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知条件利用递推思维能求出a2=
12
7
a3=
14
5
.由已知条件an+1-2(n+1)=
2n2+2n
3n-an
-2(n+1)
=
2(n+1)(an-2n)
3n-an
,①,an+1-(n+1)=
2n2+2n
3n-an
-(n+1)
=
(n+1)(an-n)
3n-an
,②,
,得:
an+1-2(n+1)
an+1-(n+1)
=
2(an-2n)
an-n
,由此能求出
an-2n
an-n
=2n+1
(2)由(1)得an-2n=2n+1•(an-n),故an=
n•2n+1-2n
2n+1-1
=n-
n
2n+1-1
≥n-
1
3
,由此能证明Sn
n2
2
+
n
6
解答: (1)解:∵首项a1=
2
3
的数列{an}满足:3nan+1-anan+1=2n2+2n(n∈N*),
∴3a2-
2
3
a2
=4,解得a2=
12
7

6a3-
12
7
a3=12
,解得a3=
14
5

an+1=
2n2+2n
3n-an

an+1-2(n+1)=
2n2+2n
3n-an
-2(n+1)

=
-4n2-4n+2(n+1)an
3n-an

=
2(n+1)(an-2n)
3n-an
,①
an+1-(n+1)=
2n2+2n
3n-an
-(n+1)

=
-n2-n+(n+1)an
3n-an

=
(n+1)(an-n)
3n-an
,②
,得:
an+1-2(n+1)
an+1-(n+1)
=
2(an-2n)
an-n

a1=
2
3
,∴
a1-2
a1-1
=4

∴{
an-2n
an-n
}是首项为4,公比为2的等比数列,
an-2n
an-n
=4•2n-1=2n+1
(2)证明:∵
an-2n
an-n
=4•2n-1=2n+1
an-2n=2n+1•(an-n)
∴(2n+1-1)an=n•2n+1-2n,
an=
n•2n+1-2n
2n+1-1
=n-
n
2n+1-1
≥n-
1
3

∴Sn≥(1+2+3+…+n)-
n
3

=
n(n+1)
2
-
n
3

=
n2
2
+
n
6
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意构造法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网