题目内容
已知a,b∈R,比较a2-2ab+2b2与2a-3的大小.
解析:a2-2ab+2b2-(2a-3)=a2-2ab+2b2-2a+3=(a-b)2-2(a-b)+b2-2b+3?
=[(a-b)2-2(a-b)+1]+(b2-2b+1)+1?
=(a-b-1)2+(b-1)2+1,?
∵(a-b-1)2≥0,(b-1)2≥0,1>0,
∴(a-b-1)2+(b-1)2+1>0,
即a2-2ab+2b2>2a-3.
练习册系列答案
相关题目
题目内容
已知a,b∈R,比较a2-2ab+2b2与2a-3的大小.
解析:a2-2ab+2b2-(2a-3)=a2-2ab+2b2-2a+3=(a-b)2-2(a-b)+b2-2b+3?
=[(a-b)2-2(a-b)+1]+(b2-2b+1)+1?
=(a-b-1)2+(b-1)2+1,?
∵(a-b-1)2≥0,(b-1)2≥0,1>0,
∴(a-b-1)2+(b-1)2+1>0,
即a2-2ab+2b2>2a-3.