ÌâÄ¿ÄÚÈÝ
2£®ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄǰnÏîºÍSn£¬Ê×Ïîa1=a£¬¹«±ÈΪq£¨q¡Ù0ÇÒq¡Ù1£©£®£¨1£©ÍƵ¼Ö¤Ã÷£ºSn=$\frac{{a£¨1-{q^n}£©}}{1-q}$£»
£¨2£©µÈ±ÈÊýÁÐ{an}ÖУ¬ÊÇ·ñ´æÔÚÁ¬ÐøµÄÈýÏak¡¢ak+1¡¢ak+2£¬Ê¹µÃÕâÈýÏî³ÉµÈ²îÊýÁУ¿Èô´æÔÚ£¬Çó³ö·ûºÏÌõ¼þµÄµÈ±ÈÊýÁй«±ÈqµÄÖµ£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©±¾ÌâÖУ¬Èôa=q=2£¬ÒÑÖªÊýÁÐ{nan}µÄǰnÏîºÍTn£¬ÊÇ·ñ´æÔÚÕýÕûÊýn£¬Ê¹µÃTn¡Ý2016£¿Èô´æÔÚ£¬Çó³önµÄȡֵ¼¯ºÏ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©ÀûÓôíλÏà¼õ·¨Õæ¼ÙÇó½â¼´¿É£®
£¨2£©²»´æÔÚ´æÔÚÁ¬ÐøµÄÈýÏak¡¢ak+1¡¢ak+2£¬Ê¹µÃÕâÈýÏî³ÉµÈ²îÊýÁУ®ÀûÓõȲîÊýÁеĵȲîÖÐÏîÁгö¹ØÏµÊ½£¬ÍƳöì¶Ü½á¹û£®
£¨3£©ÀûÓôíλÏà¼õ·¨Çó³öǰnÏîºÍ£¬Í¨¹ýÊýÁеĵ¥µ÷ÐÔÅжÏn=7Óë8ʱ£¬ÍƳö½á¹û¼´¿É£®
½â´ð ½â£º£¨1£©¡ßSn=a1+a2+a3+¡+an=a1+a1q+a1q2+¡+a1qn-1£¬¢Ù
¡àqSn=a1q+a1q2+a1q3+¡+a1qn£¬¢Ú
¢Ù-¢Ú¿ÉµÃ£¨1-q£©Sn=a1-a1qn£¬
µ±q¡Ù1ʱ£¬ÉÏʽÁ½±ßͬ³ýÒÔ1-q¿ÉµÃSn=$\frac{{a£¨1-{q^n}£©}}{1-q}$£¬¡5·Ö
£¨2£©²»´æÔÚ´æÔÚÁ¬ÐøµÄÈýÏak¡¢ak+1¡¢ak+2£¬Ê¹µÃÕâÈýÏî³ÉµÈ²îÊýÁУ®
Ö¤Ã÷ÈçÏ£ºÈôak¡¢ak+1¡¢ak+2³ÉµÈ²îÊýÁУ¬Ôò£º$2{a_{k+1}}={a_k}+{a_{k+2}}⇒{a_k}£¨{q^2}-q+1£©=0$
¡ßak¡Ù0¡àq2-q+1=0
¶ø${q^2}-q+1={£¨q-\frac{1}{2}£©^2}+\frac{3}{4}£¾0$¡8·Ö
¡à²»´æÔÚ´æÔÚÁ¬ÐøµÄÈýÏak¡¢ak+1¡¢ak+2£¬Ê¹µÃÕâÈýÏî³ÉµÈ²îÊýÁУ®¡10·Ö
£¨2£©Tn=1¡Á21+2¡Á22+¡+n¡Á2n ¢Ù
2Tn=1¡Á22+2¡Á23+3¡Á24+¡+n¡Á2n+1¡¡¡¡¡¡ ¢Ú
¢Ù-¢ÚµÃTn=n¡Á2n+1-£¨21+22+23+¡+2n£©=£¨n-1£©2n+1+2¡13·Ö
ÓÉÓÚTnÊǵÝÔöµÄ£¬µ±n=7ʱ${T_7}=6¡Á{2^8}+2£¼2016$£»
µ±n=8ʱ${T_8}=7¡Á{2^9}+2£¾{2^{11}}£¾2016$£®
ËùÒÔ´æÔÚÕýÕûÊýn£¬Ê¹µÃTn¡Ý2016µÄȡֵ¼¯ºÏΪ{n|n¡Ý8£¬n¡ÊN+}-¡16·Ö£®
µãÆÀ ±¾Ì⿼²éµÈ±ÈÊýÁÐÇóºÍ£¬ÊýÁеÄÐÔÖʵÄÓ¦Ó㬿¼²éת»¯Ë¼ÏëÒÔ¼°¼ÆËãÄÜÁ¦£®
| A£® | t£¾5 | B£® | t£¼5 | C£® | t¡Ý5 | D£® | t¡Ü5 |
| A£® | $\frac{1}{4}$ | B£® | $\frac{1}{2}$ | C£® | 1 | D£® | 2 |
| A£® | $£¨\frac{1}{3}£¬1£©$ | B£® | $£¨-¡Þ£¬\frac{1}{3}£©¡È£¨1£¬+¡Þ£©$ | ||
| C£® | $£¨-\frac{1}{3}£¬1£©$ | D£® | $£¨-¡Þ£¬-1£©¡È£¨-1£¬\frac{1}{3}£©¡È£¨1£¬+¡Þ£©$ |