题目内容
在正三角形
中,
、
、
分别是
、
、
边上的点,满足
(如图1).将△
沿
折起到
的位置,使二面角
成直二面角,连结
、
(如图2)

(Ⅰ)求证:
⊥平面
;
(Ⅱ)求二面角
的余弦值.
(Ⅰ)求证:
(Ⅱ)求二面角
(Ⅰ)取BE的中点D,连结DF∵AE
EB=CF
FA=1
2,∴AF=AD=2,而∠A=600,∴△ADF是正三角形,AE=DE=1,∴EF⊥AD,在图2中,A1E⊥EF,BE⊥EF,∴∠A1EB为二面角A1-EF-B的平面角.∴A1E⊥BE∴A1E⊥平面BEF,即A1E⊥平面BEP(Ⅱ)
试题分析:不妨设正三角形ABC 的边长为 3 .
(I)在图1中,取BE的中点D,连结DF.
∵AE
又AE=DE=1,∴EF⊥AD. 2分
在图2中,A1E⊥EF,BE⊥EF,∴∠A1EB为二面角A1-EF-B的平面角.
由题设条件知此二面角为直二面角,∴A1E⊥BE.
又BE∩EF=E,∴A1E⊥平面BEF,即A1E⊥平面BEP. .4分
(II)建立分别以ED、EF、EA为x轴、y轴、z轴的空间直角坐标系,则E(0,0,0),A(0,0,1),
B(2,0,0),F(0,
设平面ABP的法向量为
由
由
所以二面角B-A1P-F的余弦值是
点评:证明线面垂直主要通过已知中的垂直的直线来推理,其重要注意翻折前后保持不变的量;第二问二面角的求解充分把握好从点E出发的三线两两垂直建立空间坐标系,通过两面的法向量的夹角得到二面角
练习册系列答案
相关题目