题目内容

(2010•广东模拟)如图,在三棱锥P-ABC中,PA、PB、PC两两垂直,且PA=3,PB=2,PC=1.设M是底面ABC内一点,定义f(M)=(m,n,p),其中m、n、p分别是三棱锥M-PAB、三棱锥M-PBC、三棱锥M-PCA的体积.若f(M)=(
1
2
,x,y)
,则x+y=
1
2
1
2
分析:先根据三棱锥的特点求出其体积,然后利用新定义通过体积,推出建立x与y的关系,解之即可.
解答:解:∵PA、PB、PC两两垂直,且PA=3.PB=2,PC=1.
∴V P-ABC=
1
3
×
1
2
×3×2×1=1=
1
2
+x+y
即x+y=
1
2

故答案为:
1
2
点评:本题主要考查了棱锥的体积,同时考查了基本不等式的运用,是题意新颖的一道题目,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网