题目内容

以抛物线y2=-8x的焦点为圆心,并且与此抛物线的准线相切的圆的方程为


  1. A.
    (x-1)2+y2=4
  2. B.
    (x-2)2+y2=16
  3. C.
    (x+2)2+y2=4
  4. D.
    (x+2)2+y2=16
D
分析:找出抛物线的焦点坐标和准线方程,确定圆心和半径,从而求出圆的标准方程.
解答:抛物线y2=-8x的焦点(-2,0),准线方程为:x=2,
∴以抛物线y2=-8x的焦点为圆心,并且与此抛物线的准线相切的圆的半径是4,
∴以抛物线y2=-8x的焦点为圆心,并且与此抛物线的准线相切的圆的方程为;(x+2)2+y2=16,
故答案选 D.
点评:本题考查抛物线的性质及求圆的标准方程的方法,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网