题目内容

16.在平面直角坐标系xOy中,椭圆$\frac{x{\;}^{2}}{a{\;}^{2}}$+$\frac{y{\;}^{2}}{b{\;}^{2}}$=1(a>b>0)内接四边形ABCD(点A、B、C、D在椭圆上)的对角线AC、BD相交于P($\frac{1}{b{\;}^{2}}$,$\frac{1}{a{\;}^{2}}$),且$\overrightarrow{AP}$=λ$\overrightarrow{PC}$,$\overrightarrow{BP}$=λ$\overrightarrow{PD}$,则直线AB的斜率为(  )
A.$\frac{-a{\;}^{2}-c{\;}^{2}}{c{\;}^{2}}$B.$\frac{c(λ-1)}{a}$C.-1D.-2

分析 设A(x1,y1),B(x2,y2),直线AB的斜率为k.由$\frac{{x}_{1}^{2}}{{a}^{2}}+\frac{{y}_{1}^{2}}{{b}^{2}}=1$,$\frac{{x}_{2}^{2}}{{a}^{2}}+\frac{{y}_{2}^{2}}{{b}^{2}}=1$,两式相减可得:b2(x1+x2)=-a2(y1+y2)k,由$\overrightarrow{AP}$=λ$\overrightarrow{PC}$,可得$\overrightarrow{OC}$=$(\frac{1+λ-{x}_{1}{b}^{2}}{λ{b}^{2}},\frac{1+λ-{y}_{1}{a}^{2}}{λ{a}^{2}})$,代入椭圆的方程可得:$\frac{(1+λ-{x}_{1}{b}^{2})}{{λ}^{2}{a}^{2}{b}^{4}}$+$\frac{(1+λ-{y}_{1}{a}^{2})}{{λ}^{2}{a}^{4}{b}^{2}}$=1,同理可得$\frac{(1+λ-{x}_{2}{b}^{2})}{{λ}^{2}{a}^{2}{b}^{4}}$+$\frac{(1+λ-{y}_{2}{a}^{2})}{{λ}^{2}{a}^{4}{b}^{2}}$=1.两式相减可得:2(1+λ)-$({x}_{1}+{x}_{2}){b}^{2}$+k$[2(1+λ)-({y}_{1}+{y}_{2}){a}^{2}]$=0,把(*)代入上式整理即可得出.

解答 解:设A(x1,y1),B(x2,y2),直线AB的斜率为k.
则$\frac{{x}_{1}^{2}}{{a}^{2}}+\frac{{y}_{1}^{2}}{{b}^{2}}=1$,$\frac{{x}_{2}^{2}}{{a}^{2}}+\frac{{y}_{2}^{2}}{{b}^{2}}=1$,
两式相减可得:$\frac{{x}_{1}+{x}_{2}}{{a}^{2}}+\frac{{y}_{1}+{y}_{2}}{{b}^{2}}k=0$,
化为b2(x1+x2)=-a2(y1+y2)k,(*)
∵$\overrightarrow{AP}$=λ$\overrightarrow{PC}$,∴$\overrightarrow{OC}=\frac{1+λ}{λ}\overrightarrow{OP}-\frac{1}{λ}\overrightarrow{OA}$=$(\frac{1+λ-{x}_{1}{b}^{2}}{λ{b}^{2}},\frac{1+λ-{y}_{1}{a}^{2}}{λ{a}^{2}})$,
代入椭圆的方程可得:$\frac{(1+λ-{x}_{1}{b}^{2})}{{λ}^{2}{a}^{2}{b}^{4}}$+$\frac{(1+λ-{y}_{1}{a}^{2})}{{λ}^{2}{a}^{4}{b}^{2}}$=1,
同理可得$\frac{(1+λ-{x}_{2}{b}^{2})}{{λ}^{2}{a}^{2}{b}^{4}}$+$\frac{(1+λ-{y}_{2}{a}^{2})}{{λ}^{2}{a}^{4}{b}^{2}}$=1.
两式相减可得:2(1+λ)-$({x}_{1}+{x}_{2}){b}^{2}$+k$[2(1+λ)-({y}_{1}+{y}_{2}){a}^{2}]$=0,
把(*)代入上式可得:2(1+λ)+a2(y1+y2)k+k$[2(1+λ)-({y}_{1}+{y}_{2}){a}^{2}]$=0,
化为k=-1.
故选:C.

点评 本题考查了椭圆的标准方程及其性质、“点差法”、向量的线性运算、斜率计算公式,考查了推理能力与计算能力,属于难题

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网