题目内容
8.过点A(-3,-4)作椭圆$\frac{{x}^{2}}{4}$+y2=1的切线l,求直线l的方程.分析 设切线l的方程为:y+4=k(x+3),与椭圆方程联立化为(1+4k2)x2+(24k2-32k)x+36k2-96k+60=0,利用△=0解出k即可.
解答 解:由题意可知切线l的斜率存在,设切线l的方程为:y+4=k(x+3),
化为y=kx+3k-4,
联立$\left\{\begin{array}{l}{y=kx+3k-4}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$,
化为(1+4k2)x2+(24k2-32k)x+36k2-96k+60=0,
∵△=(24k2-32k)2-4(1+4k2)(36k2-96k+60)=0,
化为:5k2-24k+15=0,解得k=$\frac{12±\sqrt{69}}{5}$.
∴直线l的方程为$y+4=\frac{12±\sqrt{69}}{5}(x+3)$.
点评 本题考查了直线与椭圆相切转化为方程联立可得△=0,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
16.在平面直角坐标系xOy中,椭圆$\frac{x{\;}^{2}}{a{\;}^{2}}$+$\frac{y{\;}^{2}}{b{\;}^{2}}$=1(a>b>0)内接四边形ABCD(点A、B、C、D在椭圆上)的对角线AC、BD相交于P($\frac{1}{b{\;}^{2}}$,$\frac{1}{a{\;}^{2}}$),且$\overrightarrow{AP}$=λ$\overrightarrow{PC}$,$\overrightarrow{BP}$=λ$\overrightarrow{PD}$,则直线AB的斜率为( )
| A. | $\frac{-a{\;}^{2}-c{\;}^{2}}{c{\;}^{2}}$ | B. | $\frac{c(λ-1)}{a}$ | C. | -1 | D. | -2 |
3.为减少汽车尾气排放,提高空气质量,各地纷纷推出汽车尾号限行措施,为做好此项工作,某市交支队对市区各交通枢纽进行调查统计,表中列出了某交通路口单位时间内通过的1000辆汽车的车牌尾号记录:
由于某些数据缺失,表中以英文字母作标记,请根据图表提供的信息计算:
(Ⅰ)若采用分层抽样的方法从这1000辆汽车中抽取20辆,了解驾驶员对尾号限行的建议,应分别从一、二、三、四组中各抽取多少辆?
(Ⅱ)以频率代替概率,在此路口随机抽取4辆汽车,奖励汽车用品,用ξ表示车尾号在第二组的汽车数目,求ξ的分布列和数学期望.
| 组名 | 尾号 | 频数 | 频率 |
| 第一组 | 0、1、4 | 200 | 0.2 |
| 第二组 | 3、6 | 250 | 0.25 |
| 第三组 | 2、5、7 | a | b |
| 第四组 | 8、9 | e | 0.3 |
(Ⅰ)若采用分层抽样的方法从这1000辆汽车中抽取20辆,了解驾驶员对尾号限行的建议,应分别从一、二、三、四组中各抽取多少辆?
(Ⅱ)以频率代替概率,在此路口随机抽取4辆汽车,奖励汽车用品,用ξ表示车尾号在第二组的汽车数目,求ξ的分布列和数学期望.