ÌâÄ¿ÄÚÈÝ
1£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬ÓÒ¶¥µãAÊÇÅ×ÎïÏßy2=8xµÄ½¹µã£®Ö±Ïßl£ºy=k£¨x-1£©ÓëÍÖÔ²CÏཻÓÚP£¬QÁ½µã£®£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Èç¹û$\overrightarrow{AM}=\overrightarrow{AP}+\overrightarrow{AQ}$£¬µãM¹ØÓÚÖ±ÏßlµÄ¶Ô³ÆµãNÔÚyÖáÉÏ£¬ÇókµÄÖµ£®
·ÖÎö £¨¢ñ£©È·¶¨ÍÖÔ²µÄ¼¸ºÎÁ¿£¬¼´¿ÉÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬Ö±Ïßl£ºy=k£¨x-1£©ÓëÍÖÔ²CÁªÁ¢£¬È·¶¨MµÄ×ø±ê£¬½øÒ»²½¿ÉµÃMNÖеã×ø±ê£¬ÓÉÓÚM£¬N¹ØÓÚÖ±Ïßl¶Ô³Æ£¬ËùÒÔM£¬NËùÔÚÖ±ÏßÓëÖ±Ïßl´¹Ö±£¬¼´¿ÉÇókµÄÖµ£®
½â´ð ½â£º£¨¢ñ£©Å×ÎïÏßy2=8x£¬
ËùÒÔ½¹µã×ø±êΪ£¨2£¬0£©£¬¼´A£¨2£¬0£©£¬
ËùÒÔa=2£®
ÓÖÒòΪe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬ËùÒÔc=$\sqrt{3}$£®
ËùÒÔb=1£¬
ËùÒÔÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}=1$£® ¡£¨4·Ö£©
£¨¢ò£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬
ÒòΪ$\overrightarrow{AM}=\overrightarrow{AP}+\overrightarrow{AQ}$£¬
ËùÒÔ$\overrightarrow{AM}$=£¨x1+x2-4£¬y1+y2£©£¬
ËùÒÔM£¨x1+x2-2£¬y1+y2£©£®
ÓÉÖ±Ïßl£ºy=k£¨x-1£©ÓëÍÖÔ²CÁªÁ¢£¬µÃ£¨4k2+1£©x2-8k2x+4k2-4=0£¬
µÃx1+x2-2=-$\frac{2}{4{k}^{2}+1}$£¬y1+y2=$\frac{-2k}{4{k}^{2}+1}$£¬
¼´M£¨-$\frac{2}{4{k}^{2}+1}$£¬$\frac{-2k}{4{k}^{2}+1}$£©£®
ÉèN£¨0£¬y3£©£¬ÔòMNÖеã×ø±êΪ£¨-$\frac{1}{4{k}^{2}+1}$£¬$\frac{-k}{4{k}^{2}+1}+\frac{{y}_{3}}{2}$£©£¬
ÒòΪM£¬N¹ØÓÚÖ±Ïßl¶Ô³Æ£¬
ËùÒÔMNµÄÖеãÔÚÖ±ÏßlÉÏ£¬
ËùÒÔ$\frac{-k}{4{k}^{2}+1}+\frac{{y}_{3}}{2}$=k£¨-$\frac{1}{4{k}^{2}+1}$-1£©£¬½âµÃy3=-2k£¬¼´N£¨0£¬-2k£©£®
ÓÉÓÚM£¬N¹ØÓÚÖ±Ïßl¶Ô³Æ£¬ËùÒÔM£¬NËùÔÚÖ±ÏßÓëÖ±Ïßl´¹Ö±£¬
ËùÒÔ$\frac{\frac{-2k}{4{k}^{2}+1}-£¨-2k£©}{\frac{-2}{4{k}^{2}+1}-0}•k=-1$£¬½âµÃk=¡À$\frac{\sqrt{2}}{2}$£® ¡£¨14·Ö£©
µãÆÀ ±¾Ì⿼²éÅ×ÎïÏߵļ¸ºÎÐÔÖÊ£¬¿¼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | $\frac{-a{\;}^{2}-c{\;}^{2}}{c{\;}^{2}}$ | B£® | $\frac{c£¨¦Ë-1£©}{a}$ | C£® | -1 | D£® | -2 |
| A£® | {2} | B£® | {-1} | C£® | {$\frac{1}{2}$} | D£® | {-1£¬2} |