题目内容
已知f(x)=log4(4x+1)+kx(k∈R)是偶函数.
(1)求k的值;
(2)判断方程f(x)=
x+b的零点的个数.
(1)求k的值;
(2)判断方程f(x)=
| 1 |
| 2 |
(1)∵f(x)=log4(4x+1)+kx(k∈R)是偶函数.
∴f(-x)=f(x)
即log4(4-x+1)-kx=log4(4x+1)+kx
即log4(4x+1)-(k+1)x=log4(4x+1)+kx
即2k+1=0
∴k=-
证明:(2)由(1)得f(x)=log4(4x+1)-
x
令y=log4(4x+1)-x
由于y=log4(4x+1)-x为减函数,且恒为正
故当b>0时,y=log4(4x+1)-x-b有唯一的零点,此时函数y=f(x)的图象与直线 y=
x+b有一个交点,
当b≤0时,y=log4(4x+1)-x-b没有零点,此时函数y=f(x)的图象与直线 y=
x+b没有交点
∴f(-x)=f(x)
即log4(4-x+1)-kx=log4(4x+1)+kx
即log4(4x+1)-(k+1)x=log4(4x+1)+kx
即2k+1=0
∴k=-
| 1 |
| 2 |
证明:(2)由(1)得f(x)=log4(4x+1)-
| 1 |
| 2 |
令y=log4(4x+1)-x
由于y=log4(4x+1)-x为减函数,且恒为正
故当b>0时,y=log4(4x+1)-x-b有唯一的零点,此时函数y=f(x)的图象与直线 y=
| 1 |
| 2 |
当b≤0时,y=log4(4x+1)-x-b没有零点,此时函数y=f(x)的图象与直线 y=
| 1 |
| 2 |
练习册系列答案
相关题目
已知f(x)是定义在R上的奇函数,当x>0时,f(x)=log
x,那么f(-
)的值是( )
| 1 |
| 4 |
| 1 |
| 2 |
A、
| ||
B、-
| ||
| C、2 | ||
| D、-2 |