题目内容
(1)求证:AD⊥平面A1DC1
(2)求异面直线C1D,A1C所成角的余弦.
分析:(1)由A1B1⊥A1C1,知AD⊥A1C1,由∠ADB=∠A1DB1=45°,知AD⊥A1D,由此能够证明AD垂直平面A1DC1.
(2)以A1C1,A1B1,A1A分别为x,y,z轴建立坐标系.则A1(0,0,0),C1(1,0,0),C(1,0,2),D(0,1,1),
=(-1,1,1),
=(1,0,2),
•
=1.由向量法能够求出异面直线C1D,A1C所成角的余弦.
(2)以A1C1,A1B1,A1A分别为x,y,z轴建立坐标系.则A1(0,0,0),C1(1,0,0),C(1,0,2),D(0,1,1),
| C1D |
| A1C |
| C1D |
| A1C |
解答:解:(1)证明:在直三棱柱ABC-A1B1C1中,
AD在平面A1B1C1的投影为A1B1,因为A1B1⊥A1C1,
所以AD⊥A1C1,
在矩形ABB1A1中,∠ADB=∠A1DB1=45°,
所以∠ADA1=90°,所以AD⊥A1D,
所以AD垂直平面A1DC1.
(2)以A1C1,A1B1,A1A分别为x,y,z轴建立坐标系.
则A1(0,0,0),C1(1,0,0),C(1,0,2),D(0,1,1)
则
=(-1,1,1),
=(1,0,2),
•
=1
|
|=
,|
|=
,
设异面直线C1D,A1C所成角为α,
cosα=|
=
.
AD在平面A1B1C1的投影为A1B1,因为A1B1⊥A1C1,
所以AD⊥A1C1,
在矩形ABB1A1中,∠ADB=∠A1DB1=45°,
所以∠ADA1=90°,所以AD⊥A1D,
所以AD垂直平面A1DC1.
(2)以A1C1,A1B1,A1A分别为x,y,z轴建立坐标系.
则A1(0,0,0),C1(1,0,0),C(1,0,2),D(0,1,1)
则
| C1D |
| A1C |
| C1D |
| A1C |
|
| C1D |
| 3 |
| A1C |
| 5 |
设异面直线C1D,A1C所成角为α,
cosα=|
| ||||
|
| ||
| 15 |
点评:本题考相直线和平面的垂直的证明和两条异面直线所成角的余弦值的求法,解题时要认真审题,仔细解答,注意向量法的合理运用.
练习册系列答案
相关题目