题目内容

若函数f(x)=3cos(ωx+φ)对任意的x都满足f(+x)=f(-x),则f()的值是( )
A.3或0
B.-3或0
C.0
D.-3或3
【答案】分析:由已知可得图象关于直线x=对称,进而可得在x=处函数取最值,可得答案.
解答:解:因为函数f(x)对任意的x都满足f(+x)=f(-x),
所以函数f(x)的图象关于直线x=对称,
由正余弦函数的图象特点可知在x=处函数取最值,
故f()=±3
故选D
点评:本题考查三角函数的对称性和余弦函数图象的特点,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网