题目内容
设向量
,
满足|
|=|
|=1,
•
=-
,则|
+2
|=
.
| a |
| b |
| a |
| b |
| a |
| b |
| 1 |
| 2 |
| a |
| b |
| 3 |
| 3 |
分析:由已知中|
|=|
|=1,
•
=-
,先计算出|
+2
|2的值,进而可得|
+2
|.
| a |
| b |
| a |
| b |
| 1 |
| 2 |
| a |
| b |
| a |
| b |
解答:解:∵|
|=|
|=1,
•
=-
,
|
+2
|2=
2+4
2+4
•
=1+4-2=3
∴|
+2
|=
故答案为:
| a |
| b |
| a |
| b |
| 1 |
| 2 |
|
| a |
| b |
| a |
| b |
| a |
| b |
∴|
| a |
| b |
| 3 |
故答案为:
| 3 |
点评:本题考查的知识点是平面向量数量积及向量的模,其中利用平方法,先求出|
+2
|2的值是解答的关键.
| a |
| b |
练习册系列答案
相关题目