题目内容
【题目】定义在R上的函数f(x)满足f(x)+f(x+5)=16,当x∈(﹣1,4]时,f(x)=x2﹣2x , 则函数f(x)在区间[0,2016]上的零点个数是 .
【答案】605
【解析】解:∵f(x)+f(x+5)=16, f(x+5)+f(x+10)=16,
两式相减得,f(x)=f(x+10),
故f(x)为周期为10的函数,x∈(﹣1,9)时,
令f(x)=x2﹣2x=0得:x2=2x ,
在同一坐标系中作出y=x2与y=2x的图象如下,![]()
由图知,当x∈(﹣1,4]时,函数f(x)=x2﹣2x有3个零点(y轴右侧的两个零点为2和4),
∵f’(x)=2x﹣2xln2,∴当x∈(4,9)时,f’(x)<0,函数单调减,即无零点,
综上:函数f(x)在一个周期内有三个零点,2016=10×201+6,
就是说在区间在[0,2016]上有201个完整周期,这201个周期内共603个零点,在[0,6]内有二个零点,
∴函数f(x)在[0,2016]上共有605个零点,
所以答案是:605.
练习册系列答案
相关题目
【题目】(本小题满分12分)
数学 | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩x、物理成绩y进行分析.下面是该生7次考试的成绩.
(I)他的数学成绩与物理成绩哪个更稳定?请给出你的证明;
(II)已知该生的物理成绩y与数学成绩x是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?并请你根据物理成绩与数学成绩的相关性,给出该生在学习数学、物理上的合理建议.