题目内容
已知函数 求函数的定义域、值域
解:由得
∵xÎR, ∴△0, 即 , ∴, 又∵,∴
已知函数
(Ⅰ)求函数的定义域,并证明在定义域上是奇函数;
(Ⅱ)若恒成立,求实数m的取值范围;
(Ⅲ)当时,试比较与2n+2n2的大小关系
已知函数有如下性质:如果常数,那么该函数在上是减函数,在 上是增函数.
(1)如果函数在上是减函数,在上是增函数,求的值;
(2)证明:函数(常数)在上是减函数;
(3)设常数,求函数的最小值和最大值.
已知函数。
(1)求函数的最小正周期和最大值;
(2)求函数的增区间;
(3)函数的图象可以由函数的图象经过怎样的变换得到?
【解析】本试题考查了三角函数的图像与性质的运用。第一问中,利用可知函数的周期为,最大值为。
第二问中,函数的单调区间与函数的单调区间相同。故当,解得x的范围即为所求的区间。
第三问中,利用图像将的图象先向右平移个单位长度,再把横坐标缩短为原来的 (纵坐标不变),然后把纵坐标伸长为原来的倍(横坐标不变),再向上平移1个单位即可。
解:(1)函数的最小正周期为,最大值为。
(2)函数的单调区间与函数的单调区间相同。
即
所求的增区间为,
所求的减区间为,。
(3)将的图象先向右平移个单位长度,再把横坐标缩短为原来的 (纵坐标不变),然后把纵坐标伸长为原来的倍(横坐标不变),再向上平移1个单位即可。