题目内容
【题目】设数列
的前
项和为
,且对任意正整数
,满足
.
(1)求数列
的通项公式.
(2)设
,求数列
的前
项和
.
【答案】(1)
;(2)
.
【解析】
试题分析:(1)由![]()
当
时,
,两式相减得![]()
![]()
![]()
.又当
时,![]()
![]()
![]()
![]()
![]()
是以首项
,公比
的等比数列![]()
的通项公式为
;(2)由(1)知,![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
.
试题解析: (1)因为
,
所以,当
时,
,................................1分
两式相减得
,即
................3分
又当
时,
,即
..........4分
所以
是以首项
,公比
的等比数列,
所以数列
的通项公式为
.......................6分
(2)由(1)知,
,...................7分
则
,①
,②.................8分
②-①得
,................................10分
,................................11分
所以,数列
的前
项和为
..............................12分
【题目】已知随机变量
的取值为不大于
的非负整数值,它的分布列为:
| 0 | 1 | 2 |
| n |
|
|
|
|
|
|
其中
(
)满足:
,且
.
定义由
生成的函数
,令
.
(I)若由
生成的函数
,求
的值;
(II)求证:随机变量
的数学期望
,
的方差
;
(
)
(Ⅲ)现投掷一枚骰子两次,随机变量
表示两次掷出的点数之和,此时由
生成的函数记为
,求
的值.
【题目】(本小题满分12分) 某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过
):
空气质量指数 |
|
|
|
|
|
|
空气质量等级 |
|
|
|
|
|
|
该社团将该校区在
年
天的空气质量指数监测数据作为样本,绘制的频率分布直方图如下图,把该直方图所得频率估计为概率.
![]()
(Ⅰ)请估算
年(以
天计算)全年空气质量优良的天数(未满一天按一天计算);
(Ⅱ)该校
年
月
、
日将作为高考考场,若这两天中某天出现
级重度污染,需要净化空气费用
元,出现
级严重污染,需要净化空气费用
元,记这两天净化空气总费用为
元,求
的分布列及数学期望.