题目内容

f(x)=
13
x3-x2+ax-5
在区间[-1,2]上有反函数,则a的范围是
 
分析:欲使原函数在区间[-1,2]上有反函数,只须其在区间[-1,2]上是单调函数即可,利用导数研究,只须其导数在区间[-1,2]上恒为非正或非负即可,最后利用二次函数的图象与性质即得a的范围.
解答:解:因为f(x)=
1
3
x3-x2+ax-5
在区间[-1,2]上有反函数,
所以f(x)在该区间[-1,2]上单调,
则f'(x)=x2-2x+a≥0在[-1,2]上恒成立,
得a≥1
或在f'(x)=x2-2x+a≤0上恒成立,
得a≤-3.
故答案为:(-∞,-3]∪[1,+∞).
点评:本小题主要考查利用导数研究函数的单调性、函数单调性的应用、反函数、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网