题目内容
设数列设数列{an}的前n项和为Sn,且Sn2-2Sn-ansn+1=0,n=1,2,3…(1)求a1,a2;
(2)求证:数列{
| 1 | sn-1 |
分析:(1)当n=1时,由已知得a12-2a1-a12+1=0,解得a1=
.同理,可解得a2=
.
(2)由题设Sn2-2Sn+1-anSn=0.an=Sn-Sn-1,所以Sn-1Sn-2Sn+1=0.Sn=
,
=
=-1+
,由此能够证明数列{
}是等差数列,并能求出Sn的表达式.
| 1 |
| 2 |
| 1 |
| 6 |
(2)由题设Sn2-2Sn+1-anSn=0.an=Sn-Sn-1,所以Sn-1Sn-2Sn+1=0.Sn=
| 1 |
| 2-Sn-1 |
| 1 |
| Sn-1 |
| 2-Sn-1 |
| Sn-1-1 |
| 1 |
| Sn-1-1 |
| 1 |
| sn-1 |
解答:解:(1)当n=1时,由已知得a12-2a1-a12+1=0,
解得a1=
.
同理,可解得a2=
.(4分)
(2)证明:由题设Sn2-2Sn+1-anSn=0.当n≥2,n∈N*时,an=Sn-Sn-1,
代入上式,得Sn-1Sn-2Sn+1=0.
∴Sn=
,Sn-1=
-1=
,
∴
=
=-1+
,
∴{
}是首项为
=-2,公差为-1的等差数列(10分),
∴
=-2+(n-1)•(-1)=-1-n,
∴Sn=-
+1=
(12分)
解得a1=
| 1 |
| 2 |
同理,可解得a2=
| 1 |
| 6 |
(2)证明:由题设Sn2-2Sn+1-anSn=0.当n≥2,n∈N*时,an=Sn-Sn-1,
代入上式,得Sn-1Sn-2Sn+1=0.
∴Sn=
| 1 |
| 2-Sn-1 |
| 1 |
| 2-Sn-1 |
| -1+Sn-1 |
| 2-Sn-1 |
∴
| 1 |
| Sn-1 |
| 2-Sn-1 |
| Sn-1-1 |
| 1 |
| Sn-1-1 |
∴{
| 1 |
| Sn-1 |
| 1 |
| S1-1 |
∴
| 1 |
| Sn-1 |
∴Sn=-
| 1 |
| n+1 |
| n |
| n+1 |
点评:第(1)题考查数列中第1项和第2项的求法,解题时要注意函2数题考查等差数列的证明和数列前n项和的求法,解题时要注意合理地进行等价转化.
练习册系列答案
相关题目