题目内容
(2013•绵阳一模)设数列{an}的前n项和为Sn,且(t-1)Sn=2tan-t-1(其中t为常数,t>0,且t≠1).
(I)求证:数列{an}为等比数列;
(II)若数列{an}的公比q=f(t),数列{bn}满足b1=a1,bn+1=
f(bn),求数列{
}的通项公式;
(III)设t=
,对(II)中的数列{an},在数列{an}的任意相邻两项ak与ak+1之间插入k个
(k∈N*)后,得到一个新的数列:a1,
,a2,
,
,a3,
,
,
,a4…,记此数列为{cn}.求数列{cn}的前50项之和.
(I)求证:数列{an}为等比数列;
(II)若数列{an}的公比q=f(t),数列{bn}满足b1=a1,bn+1=
| 1 |
| 2 |
| 1 |
| bn |
(III)设t=
| 1 |
| 3 |
| (-1)k |
| bk |
| (-1)1 |
| b1 |
| (-1)2 |
| b2 |
| (-1)2 |
| b2 |
| (-1)3 |
| b3 |
| (-1)3 |
| b3 |
| (-1)3 |
| b3 |
分析:(Ⅰ)利用数列递推式,再写一式,两式相减,即可证得数列{an}是以1为首项,
为公比的等比数列;
(Ⅱ)确定数列{
}是以1为首项,1为公差的等差数列,可求数列{
}的通项公式;
(III)确定数列{cn}为:1,-1,
,2,2,(
)2,-3,-3,-3,(
)3,…,再分组求和,即可求得数列{cn}的前50项之和.
| 2t |
| t+1 |
(Ⅱ)确定数列{
| 1 |
| bn |
| 1 |
| bn |
(III)确定数列{cn}为:1,-1,
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
解答:(Ⅰ)证明:由题设知(t-1)S1=2ta1-t-1,解得a1=1,
由(t-1)Sn=2tan-t-1,得(t-1)Sn+1=2tan+1-t-1,
两式相减得(t-1)an+1=2tan+1-2tan,
∴
=
(常数).
∴数列{an}是以1为首项,
为公比的等比数列.…(4分)
(Ⅱ)解:∵q=f (t)=
,b1=a1=1,bn+1=
f (bn)=
,
∴
=
=
+1,
∴数列{
}是以1为首项,1为公差的等差数列,
∴
=n.…(8分)
(III)解:当t=
时,由(I)知an=(
)n-1,于是数列{cn}为:1,-1,
,2,2,(
)2,-3,-3,-3,(
)3,…
设数列{an}的第k项是数列{cn}的第mk项,即ak=cmk,
当k≥2时,mk=k+[1+2+3+…+(k-1)]=
,
∴m9=
-45.
设Sn表示数列{cn}的前n项和,则S45=[1+
+(
)2+…+(
)8]+[-1+(-1)2×2×2+(-1)3×3×3+…+(-1)8×8×8].
∵1+
+(
)2+…+(
)8=
=2-
,
-1+(-1)2×2×2+(-1)3×3×3+…+(-1)8×8×8=-1+22-32+42-52+62-72+82
=(2+1)(2-1)+(4+3)(4-3)+(6+5)(6-5)+(8+7)(8-7)=3+7+11+15=36.
∴S45=2-
+36=38-
.
∴S50=S45+(c46+c47+c48+c49+c50)=38-
+5×(-1)9×9=-7
.
即数列{cn}的前50项之和为-7
.…(12分)
由(t-1)Sn=2tan-t-1,得(t-1)Sn+1=2tan+1-t-1,
两式相减得(t-1)an+1=2tan+1-2tan,
∴
| an+1 |
| an |
| 2t |
| t+1 |
∴数列{an}是以1为首项,
| 2t |
| t+1 |
(Ⅱ)解:∵q=f (t)=
| 2t |
| t+1 |
| 1 |
| 2 |
| bn |
| bn+1 |
∴
| 1 |
| bn+1 |
| bn+1 |
| bn |
| 1 |
| bn |
∴数列{
| 1 |
| bn |
∴
| 1 |
| bn |
(III)解:当t=
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
设数列{an}的第k项是数列{cn}的第mk项,即ak=cmk,
当k≥2时,mk=k+[1+2+3+…+(k-1)]=
| k(k+1) |
| 2 |
∴m9=
| 9×10 |
| 2 |
设Sn表示数列{cn}的前n项和,则S45=[1+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∵1+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
1-(
| ||
1-
|
| 1 |
| 28 |
-1+(-1)2×2×2+(-1)3×3×3+…+(-1)8×8×8=-1+22-32+42-52+62-72+82
=(2+1)(2-1)+(4+3)(4-3)+(6+5)(6-5)+(8+7)(8-7)=3+7+11+15=36.
∴S45=2-
| 1 |
| 28 |
| 1 |
| 28 |
∴S50=S45+(c46+c47+c48+c49+c50)=38-
| 1 |
| 28 |
| 1 |
| 256 |
即数列{cn}的前50项之和为-7
| 1 |
| 256 |
点评:本题考查等比数列与等差数列的证明,考查数列的通项与求和,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目