题目内容
在△ABC中,若a2+b2<c2,则△ABC的形状是( )
分析:直接通过余弦定理,推出结果即可.
解答:解:由余弦定理:a2+b2-2abcosC=c2,因为a2+b2<c2,所以2abcosC<0,所以C为钝角,钝角三角形.
故选C.
故选C.
点评:本题考查三角形的形状的判断,余弦定理的考查,也可以通过特殊值法能够避繁就简,注意表达式的形式的转化.
练习册系列答案
相关题目
在△ABC中,若a2=b2+bc+c2,则A=( )
| A、30° | B、60° | C、120° | D、150° |