题目内容
已知f(x)=(1)求{an}的通项公式.
(2)数列{bn}的前n项和为Tn,且满足
+16n2-8n-3.设定b1的值,使得数列{bn}是等差数列.
解:(1)由已知Pn在曲线y=f(x)上,
∴
=
.
∴
=4.
∴{
}是等差数列,
=1+4(n-1)=4n-3.
∵an>0,∴an=
.
(2)∵
=
+16n2-8n-3=
+(4n-3)(4n+1),
即(4n-3)Tn+1=(4n+1)Tn+(4n-3)(4n+1),
∴
=
+1.
∴{
}为等差数列,首项为
=b1,
=b1+(n-1)=n+(b1-1).
∴Tn=(4n-3)[n+(b1-1)]=4n2+(4b1-7)n-3(b1-1).
要使{bn}为等差数列,需使b1-1=0,∴b1=1.
当b1=1时,Tn=4n2-3n,bn=8n-7.
∴{bn}为等差数列.
练习册系列答案
相关题目