题目内容

已知f(x)=,Pn(an,)在曲线y=f(x)上(n∈N+)且a1=1,an>0.

(1)求{an}的通项公式.

(2)数列{bn}的前n项和为Tn,且满足+16n2-8n-3.设定b1的值,使得数列{bn}是等差数列.

解:(1)由已知Pn在曲线y=f(x)上,

=.

=4.

∴{}是等差数列,

=1+4(n-1)=4n-3.

∵an>0,∴an=.

(2)∵=+16n2-8n-3=+(4n-3)(4n+1),

即(4n-3)Tn+1=(4n+1)Tn+(4n-3)(4n+1),

=+1.

∴{}为等差数列,首项为=b1,=b1+(n-1)=n+(b1-1).

∴Tn=(4n-3)[n+(b1-1)]=4n2+(4b1-7)n-3(b1-1).

要使{bn}为等差数列,需使b1-1=0,∴b1=1.

当b1=1时,Tn=4n2-3n,bn=8n-7.

∴{bn}为等差数列.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网