题目内容
4.集合A={0,1}的真子集的个数为3.分析 根据题意,由集合真子集的概念写出集合A的真子集,即可得答案.
解答 解:根据题意,集合A={0,1}的真子集为∅,{1},{0};
则其真子集数目为3;
故答案为:3.
点评 本题考查集合真子集的计算,注意区分集合的子集与真子集即可.
练习册系列答案
相关题目
12.sin22α+cos22α=( )
| A. | 1 | B. | cos2α | C. | 2 | D. | sin2α |
19.将函数y=-x2+x(x∈[0,1])图象绕点(1,0)顺时针旋转θ角(0<θ<$\frac{π}{2}$)得到曲线C,若曲线C仍是一个函数的图象,则θ的最大值为( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{12}$ |
9.要得到函数y=sinx的图象,只需将函数y=sin(2x+$\frac{π}{4}$)的图象上所有点的( )
| A. | 横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),再向左平行移动$\frac{π}{8}$个单位长度 | |
| B. | 横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动$\frac{π}{4}$个单位长度 | |
| C. | 横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),再向右平行移动$\frac{π}{4}$个单位长度 | |
| D. | 横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动$\frac{π}{4}$个单位长度 |
16.在△ABC中,A,B,C所对的边长分别为a,b,c,且$\frac{sinA}{cosB}=2sinC$,则△ABC的形状为( )
| A. | 等边三角形 | B. | 直角三角形 | C. | 等腰三角形 | D. | 等腰直角三角形 |
13.对于数列{xn},若对任意n∈N*,都有xn+2-xn+1<xn+1-xn成立,则称数列{xn}为“减差数列”.设${b_n}=2t-\frac{{t{n^2}-n}}{{{2^{n-1}}}}$,若数列${b_5},{b_6},{b_7},…,{b_n}({n≥5,n∈{N^*}})$是“减差数列”,则实数t的取值范围是( )
| A. | $({0,\frac{3}{5}})$ | B. | $({0,\frac{3}{5}}]$ | C. | $({\frac{3}{5},+∞})$ | D. | $[{\frac{3}{5},+∞})$ |