题目内容

4.已知四面体P-ABC,其中△ABC是边长为6的等边三角形,PA⊥平面ABC,PA=4,则四面体P-ABC外接球的表面积为64π.

分析 由已知结合三棱锥和正三棱柱的几何特征,可得此三棱锥外接球,即为以△ABC为底面以PA为高的正三棱柱的外接球,分别求出棱锥底面半径r,和球心距d,可得球的半径R,即可求出四面体P-ABC外接球的表面积.

解答 解:∵△ABC是边长为6的等边三角形,
∴2r=$\frac{6}{sin60°}$,
∴r=2$\sqrt{3}$,
∵PA⊥平面ABC,PA=4,
∴四面体P-ABC外接球的半径为$\sqrt{12+4}$=4
∴四面体P-ABC外接球的表面积为4π•42=64π.
故答案为:64π.

点评 本题考查的知识点是球内接多面体,熟练掌握球的半径R公式是解答的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网