题目内容
12.已知曲线x2+y2=2(x≥0,y≥0)和x+y=$\sqrt{2}$围成的封闭图形为Г,则图形Г绕y轴旋转一周后所形成几何体的表面积为( )| A. | $\frac{2\sqrt{2}}{3}$ | B. | (8+4$\sqrt{2}$)π | C. | (8+2$\sqrt{2}$)π | D. | (4+2$\sqrt{2}$)π |
分析 由图象可知旋转形成的几何体的表面积由两个部分组成,分别求出S1及S2,求和可得
解答
解:由图象可知旋转形成的几何体的表面积由两个部分组成,第一部分为半圆的表面积为S1=2πR2,R=$\sqrt{2}$,
∴S1=4π
S2旋转所围成的图形为圆锥,其表面积为S2=πRl,R=$\sqrt{2}$,l=2
S2=2$\sqrt{2}$π,
故S=(4+2$\sqrt{2}$)π
故答案为D
点评 本题主要考察旋转头所围成的图形的表面积,要分两步,属于基础题.
练习册系列答案
相关题目
7.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦点(4,0),且其渐近线与圆(x-2)2+y2=3相切,则双曲线的方程为( )
| A. | $\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{8}$=1 | B. | $\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1 | C. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1 | D. | x2-$\frac{{y}^{2}}{16}$=1 |
17.从某山区养殖场散养的3500头猪中随机抽取5头,测量猪的体长x(cm)和体重y(kg),得如下测量数据:
(1)当且仅当x,y满足:x≥180且y≥100时,该猪为优等品,用上述样本数据估计山区养殖场散养的3500头猪中优等品的数量;
(2)从抽取的上述5头猪中,随机抽取2头中优等品数x的分布列及其数学期望.
| 猪编号 | 1 | 2 | 3 | 4 | 5 |
| x | 169 | 181 | 166 | 185 | 180 |
| y | 95 | 100 | 97 | 103 | 101 |
(2)从抽取的上述5头猪中,随机抽取2头中优等品数x的分布列及其数学期望.
2.甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司底薪70元,每单抽成2元; 乙公司无底薪,40单以内(含 40 单)的部分每单抽成4元,超出 40 单的部分每单抽成6元.假设同一公司的送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其100天的送餐单数,得到如下频数表:
甲公司送餐员送餐单数频数表
乙公司送餐员送餐单数频数表
(Ⅰ)现从甲公司记录的这100天中随机抽取两天,求这两天送餐单数都大于40的概率;
(Ⅱ)若将频率视为概率,回答以下问题:
(ⅰ)记乙公司送餐员日工资X(单位:元),求X的分布列和数学期望;
(ⅱ)小明拟到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为他作出选择,并说明理由.
甲公司送餐员送餐单数频数表
| 送餐单数 | 38 | 39 | 40 | 41 | 42 |
| 天数 | 20 | 40 | 20 | 10 | 10 |
| 送餐单数 | 38 | 39 | 40 | 41 | 42 |
| 天数 | 10 | 20 | 20 | 40 | 10 |
(Ⅱ)若将频率视为概率,回答以下问题:
(ⅰ)记乙公司送餐员日工资X(单位:元),求X的分布列和数学期望;
(ⅱ)小明拟到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为他作出选择,并说明理由.