题目内容
某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成8小块地,在总共16小块地中,随机选8小块地种植品种甲,另外8小块地种植品种乙.试验结束后得到品种甲和品种乙在8小块地上的每公顷产量(单位:kg/hm2)如下表:
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
| 品种甲 | 403 | 397 | 390 | 404 | 388 | 400 | 412 | 406 |
| 品种乙 | 419 | 403 | 412 | 418 | 408 | 423 | 400 | 413 |
分析:根据条件中所给的甲和乙两组数据,分别求出甲品种的每公顷产量的平均值和方差和乙的平均值和方差,把两个品种的平均值和方差进行比较,得到品种乙的样本平均数大于品种甲的样本平均数,且两个品种的样本方差差异不大,应选择种植品种乙.
解答:解:品种甲的每公顷产量的样本平均数
甲=
[403+397+390+404+388+400+412+406]=400,
方差是
(9+9+100+16+144+0+144+36)=57.25
品种乙每公顷的产量的样本平均数
乙=
[419+403+412+418+408+423+400+413]=412,
方差是
(49+81+0+36+16+121+144+1)=56
有以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,
且两个品种的样本方差差异不大,故应选择种植品种乙.
. |
| x |
| 1 |
| 8 |
方差是
| 1 |
| 8 |
品种乙每公顷的产量的样本平均数
. |
| x |
| 1 |
| 8 |
方差是
| 1 |
| 8 |
有以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,
且两个品种的样本方差差异不大,故应选择种植品种乙.
点评:本题考查两组数据的平均值和方差,并且针对于所得的结果进行比较,本题考查利用概率统计知识解决实际问题.
练习册系列答案
相关题目
某农场计划种植某种新作物.为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验,选取两大块地,每大块地分成n小块地,在总共2n小块地中.随机选n小块地种植品种甲,另外n小块地种植品种乙
(Ⅰ)假设n=2,求第一大块地都种植品种甲的概率:
(Ⅱ)试验时每大块地分成8小块.即n=8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位kg/hm2)如下表:
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
附:样本数据x1,x2…xn的样本方差S2=
[(x1-
)]2+…+(xn-
)2],其中
为样本平均数.
(Ⅰ)假设n=2,求第一大块地都种植品种甲的概率:
(Ⅱ)试验时每大块地分成8小块.即n=8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位kg/hm2)如下表:
| 品种甲 | 403 | 397 | 390 | 404 | 388 | 400 | 412 | 406 |
| 品种乙 | 419 | 403 | 412 | 418 | 408 | 423 | 400 | 413 |
附:样本数据x1,x2…xn的样本方差S2=
| 1 |
| n |
. |
| x |
. |
| x |
. |
| x |
某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.
(I)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列和数学期望;
(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
附:样本数据x1,x2,…,xa的样本方差s2=
[(x1-
)2+(x1-
)2+…+(xn-
)2],其中
为样本平均数.
(I)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列和数学期望;
(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:
| 品种甲 | 403 | 397 | 390 | 404 | 388 | 400 | 412 | 406 |
| 品种乙 | 419 | 403 | 412 | 418 | 408 | 423 | 400 | 413 |
附:样本数据x1,x2,…,xa的样本方差s2=
| 1 |
| n |
. |
| x |
. |
| x |
. |
| x |
. |
| x |