题目内容
12.已知0<α<$\frac{π}{2}$,-$\frac{π}{2}$<β<0,cos(α-β)=$\frac{1}{7}$,cos2α=-$\frac{11}{14}$,求证:α+β=$\frac{π}{3}$.分析 由角的范围及同角三角函数基本关系式可求sin(α-β),sin2α的值,利用两角和的余弦函数公式可求cos(α+β)=$\frac{1}{2}$,结合范围-$\frac{π}{2}$<α+β<$\frac{π}{2}$,即可得解α+β=$\frac{π}{3}$,从而得证.
解答 解:∵0<α<$\frac{π}{2}$,-$\frac{π}{2}$<β<0,
∴0<2α<π,0<α-β<π,可得:sin2α>0,sin(α-β)>0,
∵cos(α-β)=$\frac{1}{7}$,cos2α=-$\frac{11}{14}$,
∴sin(α-β)=$\frac{4\sqrt{3}}{7}$,sin2α=$\frac{5\sqrt{3}}{14}$,
∴cos(α+β)=cos[2α-(α-β)]=cos2αcos(α-β)+sin2αsin(α-β)=(-$\frac{11}{14}$)×$\frac{1}{7}$+$\frac{4\sqrt{3}}{7}$×$\frac{5\sqrt{3}}{14}$=$\frac{1}{2}$,
∵-$\frac{π}{2}$<α+β<$\frac{π}{2}$,
∴α+β=$\frac{π}{3}$.
得证.
点评 本题主要考查了同角三角函数基本关系式,两角和的余弦函数公式以及正弦函数的图象和性质,考查了计算能力和转化思想,属于中档题.
练习册系列答案
相关题目
2.复数z=$\frac{1+2i}{1+i}$(i是虚数单位),则z的虚部是( )
| A. | $\frac{3}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{1}{2}$i |
17.某人的手机在一天内收到k条短信的概率p,如下:
(1)计算该手机明天和后天各收到5条短信的概率;
(2)计算该手机明天和后天共收到5条短信的概率;
(3)计算该手机明天和后天一共收到至多5条短信的概率.
| k | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| pk | 0.01 | 0.06 | 0.16 | 0.25 | 0.25 | 0.17 | 0.07 | 0.02 | 0.01 |
(2)计算该手机明天和后天共收到5条短信的概率;
(3)计算该手机明天和后天一共收到至多5条短信的概率.