题目内容

(2013•许昌二模)已知点P是椭圆:
x2
16
+
y2
8
=1(x≠0,y≠0)上的动点,F1,F2是椭圆的两个焦点,O是坐标原点,若M是∠F1PF2的角平分线上一点,且
F1M
MP
=0,则|OM|的取值范围是(  )
分析:结合椭圆
x2
16
+
y2
8
=1的图象,当点P在椭圆与y轴交点处时,点M与原点O重合,此时|OM|取最小值0.
当点P在椭圆与x轴交点处时,点M与焦点F1重合,此时|OM|取最大值2
2
.由此能够得到|OM|的取值范围.
解答:解:由椭圆
x2
16
+
y2
8
=1 的方程可得,c=2
2

由题意可得,当点P在椭圆与y轴交点处时,点M与原点O重合,此时|OM|取最小值0.
当点P在椭圆与x轴交点处时,点M与焦点F1重合,此时|OM|趋于最大值 c=2
2

∵xy≠0,∴|OM|的取值范围是(0,2
2
).
故选B.
点评:本题考查椭圆的定义、标准方程,以及简单性质的应用,结合图象解题,事半功倍.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网