ÌâÄ¿ÄÚÈÝ
18£®É躯Êýf£¨x£©=lnx£¬ÇÒx0¡¢x1¡¢x2¡Ê£¨0£¬+¡Þ£©£¬ÏÂÁÐÃüÌ⣺¢ÙÈôx1£¼x2£¬Ôò$\frac{1}{{x}_{2}}$£¾$\frac{f£¨{x}_{1}£©-f£¨{x}_{2}£©}{{x}_{1}-{x}_{2}}$
¢Ú´æÔÚx0¡Ê£¨x1£¬x2£©£¬£¨x1£¼x2£©£¬Ê¹µÃ$\frac{1}{{x}_{0}}=\frac{f£¨{x}_{1}£©-f£¨{x}_{2}£©}{{x}_{1}-{x}_{2}}$
¢ÛÈôx1£¾1£¬x2£¾1£¬Ôò$\frac{f£¨{x}_{1}£©-f£¨{x}_{2}£©}{{x}_{1}-{x}_{2}}$£¼1
¢Ü¶ÔÈÎÒâµÄx1¡¢x2£¬¶¼ÓÐf£¨$\frac{{x}_{1}+{x}_{2}}{2}$£©$£¾\frac{f£¨{x}_{1}£©+f£¨{x}_{2}£©}{2}$
ÆäÖÐÕýÈ·µÄÊǢڢۢܣ¨°ÑÄãÈÏΪÕýÈ·½áÂÛµÄÐòºÅ¶¼ÌîÉÏ£©£®
·ÖÎö ÓÉf£¨x£©=lnxµÃf'£¨x£©=$\frac{1}{x}$£¨x£¾0£©£¬f'£¨x1£©=$\frac{1}{{x}_{1}}$±íʾÔÚx1´¦µÄÇÐÏßбÂÊ£¬
$\frac{f{£¨x}_{1}£©-f{£¨x}_{2}£©}{{x}_{1}{-x}_{2}}$±íʾx1Óëx2Á½µãÁ¬ÏßµÄбÂÊ£¬ÓÉ´ËÅжÏÌâÄ¿ÖеÄÃüÌâÊÇ·ñÕýÈ·¼´¿É£®
½â´ð
½â£ºÓÉf£¨x£©=lnx£¬µÃf'£¨x£©=$\frac{1}{x}$£¨x£¾0£©£»
f'£¨x1£©=$\frac{1}{{x}_{1}}$±íʾÔÚx1´¦µÄÇÐÏßбÂÊ£¬$\frac{f{£¨x}_{1}£©-f{£¨x}_{2}£©}{{x}_{1}{-x}_{2}}$±íʾx1Óëx2Á½µãµÄбÂÊ£»
¢ÙÈôx1£¼x2£¬ÓÉͼÏó¿¼²éÖ±ÏßµÄбÂʲ»Âú×ã$\frac{1}{{x}_{2}}$£¾$\frac{f{£¨x}_{1}£©-f{£¨x}_{2}£©}{{x}_{1}{-x}_{2}}$£¬¡à¢Ù²»ÕýÈ·£»
¢Ú´æÔÚx0¡Ê£¨x1£¬x2£©£¬£¨x1£¼x2£©£¬Í¼ÖÐÀ¶É«µÄÇÐÏß¾ÍÊÇÖ±ÏßÔÚx0´¦µÄÇÐÏߣ¬
Äܹ»Ê¹µÃ$\frac{1}{{x}_{0}}$=$\frac{f{£¨x}_{1}£©-f{£¨x}_{2}£©}{{x}_{1}{-x}_{2}}$£¬¡à¢ÚÕýÈ·£»
¢ÛÈôx1£¾1£¬x2£¾1£¬$\frac{1}{{x}_{i}}$£¼1£¬i=1¡¢2£¬ËùÒÔ$\frac{f{£¨x}_{1}£©-f{£¨x}_{2}£©}{{x}_{1}{-x}_{2}}$£¼1£¬¡à¢ÛÕýÈ·£»
¢Ü¶ÔÈÎÒâµÄx1£¬x2£¬$\frac{f{£¨x}_{1}£©-f{£¨x}_{2}£©}{{x}_{1}{-x}_{2}}$±íʾx1Óëx2Á½µãµÄбÂÊ£¬ÇÒf£¨$\frac{{x}_{1}{+x}_{2}}{2}$£©£¾$\frac{f{£¨x}_{1}£©+f{£¨x}_{2}£©}{2}$£¬
¡à¢ÜÕýÈ·£»
×ÛÉÏ£¬ÕýÈ·µÄÃüÌâÐòºÅÊǢڢۢܣ®
¹Ê´ð°¸Îª£º¢Ú¢Û¢Ü£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁ˵¼ÊýµÄ¼¸ºÎÒâÒåºÍº¯ÊýµÄͼÏóÓëÐÔÖʵÄÓ¦ÓÃÎÊÌ⣬ÊÇÖеµÌ⣮
| A£® | 2f£¨ln2£©£¾3f£¨ln3£© | B£® | 2f£¨ln2£©£¼3f£¨ln3£© | C£® | 2f£¨ln2£©¡Ý3f£¨ln3£© | D£® | 2f£¨ln2£©¡Ü3f£¨ln3£© |
| ¾è¿î½ð¶î£¨µ¥Î»£ºÔª£© | [0£¬50£© | [50£¬100£© | [100£¬150£© | [150£¬200£© | [200£¬250£© | [250£¬300£© |
| ¾è¿îÈËÊý | 4 | 152 | 26 | 10 | 3 | 5 |
£¨¢ò£©Îª¹ÄÀø¸ü¶àµÄÈËÀ´²Î¼ÓÕâÏî»î¶¯£¬¸Ã¹«Ë¾¾ö¶¨¶Ô¾è¿î¶îÔÚ100ÔªÒÔÉϵÄÓû§ÊµÐкì°ü½±Àø£¬¾ßÌå½±Àø¹æÔòÈçÏ£º¾è¿î¶îÔÚ[100£¬150£©µÄ½±Àøºì°ü5Ôª£¬¾è¿î¶îÔÚ[150£¬200£©µÄ½±Àøºì°ü8Ôª£¬¾è¿î¶îÔÚ[200£¬250£©µÄ½±Àøºì°ü10Ôª£¬¾è¿î¶î´óÓÚ250µÄ½±Àøºì°ü15Ôª£¬ÒÑÖª¸Ã»î¶¯²ÎÓëÈËÊýÓÐ40ÍòÈË£¬½«ÆµÂÊÊÓΪ¸ÅÂÊ£¬ÊÔ¹À¼Æ¸Ã¹«Ë¾Òª×¼±¸µÄºì°ü×ܽð¶î£®
| A£® | ¹«²îΪ2µÄµÈ²îÊýÁÐ | B£® | Ê×ÏîΪ1µÄµÈ²îÊýÁÐ | ||
| C£® | ¹«±ÈΪ2µÄµÈ±ÈÊýÁÐ | D£® | Ê×ÏîΪ1µÄµÈ±ÈÊýÁÐ |
| A£® | $\frac{1}{10}$ | B£® | $\frac{3}{10}$ | C£® | $\frac{3}{5}$ | D£® | $\frac{1}{2}$ |
| Äê·Ý | 2012 | 2013 | 2014 | 2015 | 2016 |
| Äê·Ý´úºÅx | 1 | 2 | 3 | 4 | 5 |
| ÄêÇóѧ»¨Ïúy | 3.2 | 3.5 | 3.8 | 4.6 | 4.9 |
£¨2£©ÀûÓã¨1£©ÖеĻعéÖ±Ïß·½³Ì£¬·ÖÎö2012ÄêÖÁ2016Ä걾УѧÉúÈ˾ùÄêÇóѧ»¨ÏúµÄ±ä»¯Çé¿ö£¬²¢Ô¤²â¸ÃµØÇø2017Ä걾УѧÉúÈ˾ùÄêÇóѧ»¨ÏúÇé¿ö£®
¸½£º»Ø¹éÖ±ÏßµÄбÂʺͽؾàµÄ×îС¶þ³Ë·¨¹À¼Æ¹«Ê½·Ö±ðΪ£º
$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}{£¨x}_{i}-\overline{x}£©{£¨y}_{i}-\overline{y}£©}{{\sum_{i=1}^{n}{£¨x}_{i}-\overline{x}£©}^{2}}=\frac{\sum_{i=1}^{n}{{x}_{i}y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\overline{{x}^{2}}}}\\{\widehat{a}=\overline{y}-\overline{bx}}\end{array}\right.$£®
| A£® | 1 | B£® | 2 | C£® | -i | D£® | 2i |
| A£® | $\frac{3}{2}$ | B£® | $\frac{1}{4}$ | C£® | $\frac{1}{32}$ | D£® | $\frac{1}{16}$ |