题目内容
| lim |
| n→∞ |
| 2+3 |
| 6 |
| 22+32 |
| 62 |
| 2n+3n |
| 6n |
| A、0 | ||
| B、∞ | ||
C、
| ||
| D、5 |
分析:由题意可知原式可以转化为
[
+(
)2+(
)3+…+(
)n]+
[
+ (
)2+(
)3+…+(
)n ],再由无穷等比数列的前n项和公式可知,原式能够转化为
+
,由此能够导出
(
+
+…+
)的值.
| lim |
| n→∞ |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| lim |
| n→∞ |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| ||
1-
|
| ||
1-
|
| lim |
| n→∞ |
| 2+3 |
| 6 |
| 22+32 |
| 62 |
| 2n+3n |
| 6n |
解答:解:
(
+
+…+
)
=
[
+(
)2+(
)3+…+(
)n]+
[
+ (
)2+(
)3+…+(
)n ]
=
+
=
.
故正确答案选C.
| lim |
| n→∞ |
| 2+3 |
| 6 |
| 22+32 |
| 62 |
| 2n+3n |
| 6n |
=
| lim |
| n→∞ |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| lim |
| n→∞ |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| ||
1-
|
| ||
1-
|
| 3 |
| 2 |
故正确答案选C.
点评:本题考查等比数列的极限问题,解题时要注意进行等价转化.
练习册系列答案
相关题目