题目内容
已知等比数列的各项均为正数,且成等差数列,成等比数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)已知,记,
,求证:
解:(Ⅰ)
已知函数
(1)求函数的最小正周期及单调递增区间;
(2)在中,A、B、C分别为三边所对的角,若,求的最大值.
在中, ,则 .
从6名教师中选4名开发A、B、C、D四门课程,要求每门课程有一名教师开发,每名教师只开发一门课程,且这6名中甲、乙两人不开发A课程,则不同的选择方案共有( )
A.300种 B.240种 C.144种 D.96种
数列满足,则 .
求曲线与所围成图形的面积,其中正确的是( )
A. B.
C. D.
在函数的图象上,其切线的倾斜角小于的点中,坐标为整数的点的个数是 ( )
A.3 B.2 C.1 D.0
过点且与曲线相切的直线方程为( )
在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点的直线的参数方程为(为参数),直线与曲线相交于两点.
(Ⅰ)写出曲线的直角坐标方程和直线的普通方程;
(Ⅱ)若,求的值