题目内容
17.已知△ABC内有2005个点,其中任意三点不共线,把这2005个点加上△ABC的三个点共2008个点作为顶点,组成互不相叠的小三角形,则一共可组成小三角形的个数为( )| A. | 2004 | B. | 2009 | C. | 4011 | D. | 4013 |
分析 根据题意,分析易得:△ABC中有1个点时,△ABC中有2个点时,△ABC中有3个点时,可以形成小三角形的个数,由归纳推理的方法可得当三角形中有n个点时,可以形成三角形的个数,最后将n=2005代入可得答案.
解答 解:△ABC中有1个点时,可以形成小三角形的个数为2×1+1=3个,
△ABC中有2个点时,可以形成小三角形的个数为2×2+1=5个,
△ABC中有3个点时,可以形成小三角形的个数为2×3+1=7个,
…,
分析可得,当△ABC的内部每增加一个点,可以形成小三角形的数目增加2个,
则三角形中有n个点时,三角形的个数为(2n+1)个;
当△ABC内有任意三点不共线的2005个点时,共有小三角形:2×2005+1=4011个;
故选C.
点评 本题主要考查了图形的变化规律,关键是分析得到三角形的个数与三角形内点的个数的变化规律,属于中档题.
练习册系列答案
相关题目
5.
如图,直三棱柱ABC-A1B1C1中,D、E分别是AB、BB1的中点.
(Ⅰ)证明:BC1∥平面A1CD;
(Ⅱ)设AA1=AC=CB=2,AB=2$\sqrt{2}$,求四棱锥C-A1ABE的体积.
(Ⅰ)证明:BC1∥平面A1CD;
(Ⅱ)设AA1=AC=CB=2,AB=2$\sqrt{2}$,求四棱锥C-A1ABE的体积.
12.已知直线y=m(0<m<2)与函数y=sinωx+$\sqrt{3}$cosωx(ω>0)的图象依次交于A(1,m),B(5,m),C(7,m)三点,则ω=( )
| A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | $\frac{π}{6}$ |
2.已知函数$f(x)=\sqrt{3}sinωx+cosωx({ω>0})$,x∈R,在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值是$\frac{π}{3}$,则ω=( )
| A. | 1 | B. | 2 | C. | $\frac{2}{3}$ | D. | $\frac{3}{2}$ |
7.已知全集U=R,集合A={x|0<log2x<2},B={y|y=x2+2},则(CUB)∩A=( )
| A. | (1,2) | B. | (1,4) | C. | [2,4) | D. | (0,2) |