题目内容
| A、61 | B、90 | C、91 | D、127 |
考点:归纳推理
专题:推理和证明
分析:根据图象的规律可得相邻两项的差的规律可分析得出f(n)-f(n-1)=6(n-1),进而根据合并求和的方法求得f(n)的表达式,问题得以解决.
解答:
解:由于f(2)-f(1)=7-1=6,
f(3)-f(2)=19-7=2×6,
f(4)-f(3)=37-19=3×6,
f(5)-f(4)=61-37=4×6,…
因此,当n≥2时,有f(n)-f(n-1)=6(n-1),
所以f(n)=[f(n)-f(n-1)]+[f(n-1)-f(n-2)]+…+[f(2)-f(1)]+f(1)=6[(n-1)+(n-2)+…+2+1]+1=3n2-3n+1.
又f(1)=1=3×12-3×1+1,
所以f(n)=3n2-3n+1.
当n=6时,f(6)=3×62-3×6+1=91.
故选:C.
f(3)-f(2)=19-7=2×6,
f(4)-f(3)=37-19=3×6,
f(5)-f(4)=61-37=4×6,…
因此,当n≥2时,有f(n)-f(n-1)=6(n-1),
所以f(n)=[f(n)-f(n-1)]+[f(n-1)-f(n-2)]+…+[f(2)-f(1)]+f(1)=6[(n-1)+(n-2)+…+2+1]+1=3n2-3n+1.
又f(1)=1=3×12-3×1+1,
所以f(n)=3n2-3n+1.
当n=6时,f(6)=3×62-3×6+1=91.
故选:C.
点评:本题主要考查了数列的问题、归纳推理.属于基础题.
练习册系列答案
相关题目
△ABC的三边分别为a、b、c,且a:b:c=2:3:4,则△ABC的形状为( )
| A、锐角三角形 | B、直角三角形 |
| C、钝角三角形 | D、无法判定 |
已知函数f(x)=
,g(x)=(
) ax2+bx(a≠0).若函数f(x)与g(x)的图象有且仅有两个公共点,坐标从左至右记为(x1,y1),(x2,y2),给出下列命题正确的是( )
|
| 1 |
| 2 |
| A、若a>0,则x1+x2<0,y1-y2>0 |
| B、若a<0,则x1+x2>0,y1-y2>0 |
| C、若a<0,则x1+x2<0,y1-y2符号无法确定 |
| D、若a<0,则x1+x2>0,y1-y2符号无法确定 |
等比数列{an},满足a1=2,公比q=2,则a5=( )
| A、10 | B、16 | C、32 | D、64 |
下列是二元一次不等式2x-y+6≤0的解所表示的平面区域的是( )
| A、 |
| B、 |
| C、 |
| D、 |
已知f(x)=x5+2x4+3x3+4x2+5x+6,用秦九韶算法求这个多项式当x=2时的值的过程中,不会出现的结果是( )
| A、11 | B、28 | C、57 | D、120 |
已知定义在R上的函数f(x),g(x)满足:①f(x)-ax•g(x)=0,②g(x)≠0③
+
=
,④f′(x)•g(x)<f(x)•g′(x),设数列{
}(n∈N+)的前n项和为Sn,则Sn的取值范围是( )
| f(1) |
| g(1) |
| f(-1) |
| g(-1) |
| 5 |
| 2 |
| f(n) |
| g(n) |
A、(0,
| ||
B、[
| ||
C、[1,
| ||
D、[
|
| A、2 | ||
| B、5 | ||
C、
| ||
D、
|