题目内容

已知实数x,y满足不等式组
y≤x
x+2y≤4
y≥
1
2
x+m
且z=x2+y2+2x-2y+2的最小值为2.则实数m的取值范围为(  )
A.(-∞,0)B.(-∞,0]C.(-∞,
4
3
]
D.(0,
4
3
]
先根据约束条件画出可行域,
其中目标函数:z=x2+y2+2x-2y+2=(x+1)2+(y-1)2
表示可行域内点P(x,y)到(-1,1)距离的平方,如图,
因点P到直线y=x的距离即为
2
,即z=x2+y2+2x-2y+2的取值为2,
观察图形可知,当直线y=
1
2
x+m在y轴上的截距小于等于0时,此时z=x2+y2+2x-2y+2的最小值为2.即m≤0.
故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网