ÌâÄ¿ÄÚÈÝ
6£®Ë«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÁ½¶¥µãΪA1£¬A2£¬ÐéÖáÁ½¶ËµãΪB1£¬B2£¬Á½½¹µãΪF1£¬F2£¬ÈôÒÔA1A2Ϊֱ¾¶µÄÔ²ÄÚÇÐÓÚÁâÐÎF1B1F2B2£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊÊÇ£¨¡¡¡¡£©| A£® | $\sqrt{5}$-1 | B£® | $\frac{3+\sqrt{5}}{2}$ | C£® | $\frac{\sqrt{5}+1}{2}$ | D£® | $\sqrt{3}$+1 |
·ÖÎö ÓÉÌâÒâ¿ÉµÃ¶¥µãºÍÐéÖá¶Ëµã×ø±ê¼°½¹µã×ø±ê£¬ÇóµÃÁâÐεı߳¤£¬ÔËÓõȻý·¨¿ÉµÃ$\frac{1}{2}$•2b•2c=$\frac{1}{2}$a•4$\sqrt{{b}^{2}+{c}^{2}}$£¬ÔÙÓÉa£¬b£¬cµÄ¹ØÏµºÍÀëÐÄÂʹ«Ê½£¬¼ÆËã¼´¿ÉµÃµ½ËùÇóÖµ£®
½â´ð
½â£ºÓÉÌâÒâ¿ÉµÃA1£¨-a£¬0£©£¬A2£¨a£¬0£©£¬B1£¨0£¬b£©£¬B2£¨0£¬-b£©£¬
F1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬
ÇÒa2+b2=c2£¬ÁâÐÎF1B1F2B2µÄ±ß³¤Îª$\sqrt{{b}^{2}+{c}^{2}}$£¬
ÓÉÒÔA1A2Ϊֱ¾¶µÄÔ²ÄÚÇÐÓÚÁâÐÎF1B1F2B2£¬Çеã·Ö±ðΪA£¬B£¬C£¬D£®
ÓÉÃæ»ýÏàµÈ£¬¿ÉµÃ$\frac{1}{2}$•2b•2c=$\frac{1}{2}$a•4$\sqrt{{b}^{2}+{c}^{2}}$£¬
¼´Îªb2c2=a2£¨b2+c2£©£¬
¼´ÓÐc4+a4-3a2c2=0£¬
ÓÉe=$\frac{c}{a}$£¬¿ÉµÃe4-3e2+1=0£¬
½âµÃe2=$\frac{3¡À\sqrt{5}}{2}$£¬
¿ÉµÃe=$\frac{1+\sqrt{5}}{2}$£¬»òe=$\frac{\sqrt{5}-1}{2}$£¨ÉáÈ¥£©£®
¹ÊÑ¡£ºA£®
µãÆÀ ±¾Ì⿼²éË«ÇúÏßµÄÀëÐÄÂʵÄÇ󷨣¬×¢ÒâÔËÓÃÔ²ÄÚÇеȻý·¨£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | $\frac{{y}^{2}}{2}-\frac{{x}^{2}}{3}$=1 | B£® | y2-$\frac{{x}^{2}}{4}$=1 | C£® | $\frac{{y}^{2}}{4}$-x2=1 | D£® | $\frac{{y}^{2}}{3}-\frac{{x}^{2}}{2}$=1 |
| A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
| C£® | ³äÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |