题目内容

已知f(x)=loga(x+1),g(x)=loga(x-1)(a>0,a≠1).设h(x)=f(x)-g(x)
(1)求函数h(x)的定义域;
(2)判断函数h(x)的奇偶性,并予以证明.
(1)h(x)=f(x)-g(x)=loga(x+1)-loga(x-1)=loga
(1+x)
(1-x)
,则有
1+x
1-x
>0

即(x+1)(x-1)<0,则-1<x<1,故h(x)的定义域为{x|-1<x<1}
(2)h(-x)=loga
(1-x)
(1+x)
=loga(
1+x
1-x
)
-1
=-loga
(1+x)
(1-x)
=-h(x)
,故h(x)为奇函数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网