题目内容
11.(1)计算${27^{-\frac{1}{3}}}+lg0.01-ln\sqrt{e}+{3^{{{log}_3}2}}$(2)已知x+x-1=3,求$\frac{{{x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}}}{{{x^2}-{x^{-2}}}}$的值.
分析 (1)直接利用有理指数幂的运算性质和对数的运算性质化简得答案;
(2)由已知分别求出${x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}}$、x2-x-2的值,则答案可求.
解答 解:(1)${27^{-\frac{1}{3}}}+lg0.01-ln\sqrt{e}+{3^{{{log}_3}2}}$
=$({3}^{3})^{-\frac{1}{3}}+lg1{0}^{-2}-ln{e}^{\frac{1}{2}}+2$
=$\frac{1}{3}-2-\frac{1}{2}+2$
=-$\frac{1}{6}$
(2)∵x+x-1=3,
∴${x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}}$=$\sqrt{({x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}})^{2}}$=$\sqrt{x+{x}^{-1}+2}=\sqrt{5}$,
x2-x-2=(x+x-1)(x-x-1)=$±3\sqrt{(x+{x}^{-1})^{2}-4}=±3\sqrt{5}$,
∴$\frac{{{x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}}}{{{x^2}-{x^{-2}}}}$=$±\frac{\sqrt{5}}{3\sqrt{5}}=±\frac{1}{3}$.
点评 本题考查有理指数幂的运算性质,考查了对数的运算性质,是基础的计算题.
练习册系列答案
相关题目
2.函数y=2|1+x|的图象大致是( )
| A. | B. | C. | D. |
16.已知实数x,y满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ 4x+3y-12≤0\\ y-2≥0\end{array}\right.$,则$z=\frac{2x-y+1}{x+1}$的最大值为( )
| A. | $\frac{5}{4}$ | B. | $\frac{4}{5}$ | C. | $\frac{9}{16}$ | D. | $\frac{1}{2}$ |
3.已知集合A={x|ax2+2x+1=0},若集合A有且仅有2个子集,则a的取值是( )
| A. | 1 | B. | -1 | C. | 0或1 | D. | -1,0或1 |
1.下列四组函数中,表示同一函数的是( )
| A. | f(x)=log22x,g(x)=$\root{3}{{x}^{3}}$ | B. | f(x)=$\sqrt{{x}^{2}}$,g(x)=x | ||
| C. | f(x)=x,g(x)=$\frac{{x}^{2}}{x}$ | D. | f(x)=lnx2,g(x)=2lnx |