题目内容
若tanα+
=
,α∈(
,
),则sin(2α+
)的值为( )
| 1 |
| tanα |
| 10 |
| 3 |
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
A.-
| B.
| C.
| D.
|
由tanα+
=
,去分母得:(tanα-3)(3tanα-1)=0,
解得:tanα=3或tanα=
,
由α∈(
,
)得tanα>1,故tanα=
舍去,
则sin(2α+
)=
×
=
×
=
×
=-
.
故选A
| 1 |
| tanα |
| 10 |
| 3 |
解得:tanα=3或tanα=
| 1 |
| 3 |
由α∈(
| π |
| 4 |
| π |
| 2 |
| 1 |
| 3 |
则sin(2α+
| π |
| 4 |
| ||
| 2 |
| sin2α+cos2α |
| 1 |
=
| ||
| 2 |
| 2sinαcosα+cos2α-sin2α |
| cos2α+sin2α |
| ||
| 2 |
| 2tanα+1-tan2α |
| 1+tan2α |
| ||
| 10 |
故选A
练习册系列答案
相关题目
若tanα+
=
,α∈(
,
),则sin(2α+
)的值为( )
| 1 |
| tanα |
| 10 |
| 3 |
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
A、-
| ||||
B、
| ||||
C、
| ||||
D、
|