题目内容
8.已知数列{an}的通项公式为an=n2-17n+2,该数列中值最小的项是( )| A. | a7 | B. | a8 | C. | a8或a9 | D. | a9或a10 |
分析 配方an=n2-17n+2=$(n-\frac{17}{2})^{2}$-$\frac{281}{4}$,利用二次函数的单调性即可得出.
解答 解:an=n2-17n+2=$(n-\frac{17}{2})^{2}$-$\frac{281}{4}$,
∴该数列中值最小的项是a8或a9,
故选:C.
点评 本题考查了二次函数的单调性,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
18.在△ABC的内角A,B,C的对边分别是a,b,c,若b2=ac,c=2a,则cosC=( )
| A. | $\frac{{\sqrt{2}}}{4}$ | B. | $-\frac{{\sqrt{2}}}{4}$ | C. | $\frac{3}{4}$ | D. | $-\frac{3}{4}$ |
16.已知数列{an}的首项为15,满足$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{{a}_{n}+2n}{{a}_{n+1}-2n}$,an+an+1≠0,且$\frac{{a}_{n}}{n}$>λ2-3λ恒成立,则实数λ的取值范围为( )
| A. | -2<λ<3 | B. | λ≤-2或λ≥3 | C. | -$\frac{3}{2}$<λ<$\frac{9}{2}$ | D. | λ≤-$\frac{3}{2}$或λ≥$\frac{9}{2}$ |
13.将函数f(x)=2sin(3x+φ)(-π<φ<π)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到函数g(x)的图象,且对任意的x∈R有g(x)+g($\frac{π}{4}$)≥0,则g(x)的单调递增区间为( )
| A. | [$\frac{kπ}{3}$+$\frac{π}{4}$,$\frac{kπ}{3}$+$\frac{5π}{12}$],k∈Z | B. | [$\frac{kπ}{3}$+$\frac{π}{12}$,$\frac{kπ}{3}$+$\frac{π}{4}$],k∈Z | ||
| C. | [$\frac{4kπ}{3}$+$\frac{π}{4}$,$\frac{4kπ}{3}$+$\frac{11π}{12}$],k∈Z | D. | [$\frac{4kπ}{3}$-$\frac{5π}{12}$,$\frac{4kπ}{3}$+$\frac{π}{4}$],k∈Z |