题目内容
4.已知命题p:关于x的方程x2-ax+4=0无实根;命题q:关于x的函数y=x2-2ax+4在[1,+∞)上是增函数,若“p或q”是真命题,“p且q”是假命题,求实数a的取值范围.分析 命题p:关于x的方程x2-ax+4=0无实根,可得△<0;命题q:关于x的函数y=x2-2ax+4在[1,+∞)上是增函数,可得a≤1.若“p或q”是真命题,“p且q”是假命题,p与q必然一真一假,即可得出.
解答 解:命题p:关于x的方程x2-ax+4=0无实根,∴△=a2-16<0,解得-4<a<4;
命题q:关于x的函数y=x2-2ax+4在[1,+∞)上是增函数,∴a≤1.
若“p或q”是真命题,“p且q”是假命题,
∴p与q必然一真一假,
∴$\left\{\begin{array}{l}{-4<a<4}\\{a>1}\end{array}\right.$或$\left\{\begin{array}{l}{a≤-4或a≥4}\\{a≤1}\end{array}\right.$,
解得1<a<4,a≤-4.
∴实数a的取值范围是1<a<4或a≤-4.
点评 本题考查了函数的性质、一元二次方程的实数根与判别式的关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
15.已知函数f(x)=x2+4x,则f(2cosθ-1)的值域是( )
| A. | [-4,+∞) | B. | (-∞,-3] | C. | [-4,5] | D. | [-3,5] |
9.已知函数f(x)=2sin(2x+φ)(|φ|<$\frac{π}{2}$)在区间(-$\frac{π}{12}$,$\frac{π}{6}$]上单调且最大值不大于$\sqrt{3}$,则φ的取值范围是( )
| A. | [0,$\frac{π}{3}$] | B. | [$-\frac{π}{3}$,$\frac{π}{6}$] | C. | ($-\frac{π}{4}$,0] | D. | [$-\frac{π}{3}$,0] |
16.设α,β,γ∈(0,$\frac{π}{2}$),且sinα+sinγ=sinβ,cosα-cosγ=cosβ,则α-β的值为( )
| A. | -$\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$或-$\frac{π}{3}$ | D. | $\frac{π}{3}$ |
13.已知A、B、C为△ABC的三个内角,向量$\overrightarrow{m}$满足|$\overrightarrow{m}$|=$\frac{\sqrt{6}}{2}$,且$\overrightarrow{m}$=($\sqrt{2}$sin$\frac{B+C}{2}$,cos$\frac{B-C}{2}$),若A最大时,动点P使得|$\overrightarrow{PB}$|、|$\overrightarrow{BC}$|、|$\overrightarrow{PC}$|成等差数列,则$\frac{|\overrightarrow{PA}|}{|\overrightarrow{BC}|}$的最大值是( )
| A. | $\frac{2\sqrt{3}}{3}$ | B. | $\frac{2\sqrt{2}}{3}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | $\frac{3\sqrt{2}}{4}$ |
16.执行如图所示程序框图,输出的a=( )

| A. | -1 | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |