题目内容

设△ABC的内角∠A、∠B、∠C所对的边长分别为a、b、c,且a2+b2-c2=2absin2C,求角C的大小.
由余弦定理,a2+b2-c2=2abcosC,(2分)
代入上式,得2abcosC=2absin2C,即sin2C-cosC=0.(5分)
因为sin2C=2sinCcosC,所以cosC(2sinC-1)=0.(8分)
所以cosC=0或sinC=
1
2
.(9分)
因为0<C<π,所以C=
π
2
或C=
π
6
或C=
6
.(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网