题目内容

11.如图,某大风车的半径为2米,每12秒旋转一周,它的最低点O离地面1米,点O在地面上的射影为A.风车圆周上一点M从最低点O开始,逆时针方向旋转40秒后到达P点,则点P到点A的距离与点P的高度之和为(  )
A.5B.4$+\sqrt{7}$C.4$+\sqrt{17}$D.4$+\sqrt{19}$

分析 以圆心O为原点,以水平方向为x轴方向,以竖直方向为y轴方向建立平面直角坐标系,则根据大风车的半径为2m,圆上最低点O离地面1米,12s秒转动一圈,我们易得到到f(t)与t间的函数关系式,求出P的坐标,即可求出点P到点A的距离与点P的高度之和.

解答 解:以圆心O为原点,以水平方向为x轴方向,以竖直方向为y轴方向建立平面直角坐标系,则根据大风车的半径为2m,圆上最低点O离地面1米,12s秒转动一圈,
设∠OO1P=θ,运动t(s)后与地面的距离为f(t).
又T=12,∴θ=$\frac{π}{6}$t,∴f(t)=3-2cos$\frac{π}{6}$t,t≥0;
风车圆周上一点M从最低点O开始,逆时针方向旋转40秒后到达P点,θ=6π+$\frac{2}{3}$π,P($\sqrt{3}$,1)
∴点P的高度3-2×(-$\frac{1}{2}$)=4
∵A(0,-3),∴AP=$\sqrt{3+16}$=$\sqrt{19}$,
∴点P到点A的距离与点P的高度之和为4+$\sqrt{19}$.
故选:D.

点评 本题考查的知识点是在实际问题中建立三角函数模型,在建立函数模型的过程中,以圆心O为原点,以水平方向为x轴方向,以竖直方向为y轴方向建立平面直角坐标系,将现实问题转化为数学问题,是解答的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网