题目内容

15.若x、y满足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≤0}\\{y≥0}\end{array}\right.$,则z=y-$\frac{1}{2}$|x|的最大值为$\frac{5}{2}$.

分析 画出约束条件表示的可行域,利用目标函数的几何意义求解最大值即可.

解答 解:$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≤0}\\{y≥0}\end{array}\right.$表示的可行域如图:z=y-$\frac{1}{2}$|x|,即:y=$\frac{1}{2}|x|$+z=$\left\{\begin{array}{l}{\frac{1}{2}x+z,x≥0}\\{-\frac{1}{2}x+z,x<0}\end{array}\right.$,由$\left\{\begin{array}{l}{x-y+2=0}\\{x+y-4=0}\end{array}\right.$可得,A(1,3),目标函数经过A(1,3)时取得最大值:$\frac{5}{2}$.
故答案为:$\frac{5}{2}$.

点评 本题考查简单线性规划的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网