题目内容
设双曲线
-
=1(a>0,b>0)的右焦点为F(c,0),方程ax2+bx-c=0的两个实根分别为x1和x2,则点P(x1,x2)与圆x2+y2=2的位置关系为
| x2 |
| a2 |
| y2 |
| b2 |
点P(x1,x2)在圆x2+y2=2外
点P(x1,x2)在圆x2+y2=2外
.分析:利用韦达定理,得出两个等式,再代入圆 的方程的左边,比较与2的关系即可.
解答:解:由韦达定理可知:x1+x2=-
,x1x2=-
,∴
+
=
+
=
>2,
∴点P(x1,x2)在圆x2+y2=2外,
故答案为点P(x1,x2)在圆x2+y2=2外
| b |
| a |
| c |
| a |
| x | 2 1 |
| x | 2 2 |
| b2 |
| a2 |
| 2c |
| a |
| b2+2ac |
| a2 |
∴点P(x1,x2)在圆x2+y2=2外,
故答案为点P(x1,x2)在圆x2+y2=2外
点评:本题主要考查韦达定理,考查双曲线的几何性质,属于基础题.
练习册系列答案
相关题目
设双曲线
-
=1的一条渐近线与抛物线y=x2+1只有一个公共点,则双曲线的离心率为( )
| x2 |
| a2 |
| y2 |
| b2 |
A、
| ||||
| B、5 | ||||
C、
| ||||
D、
|